Upcoming Solutions for Near Earth Objects

Artist’s impression of ESA’s Hildalgo spacecraft. Image credit: ESA.Click to enlarge
Telescope facilities across the world are watching the skies for rocky remnants from outer space on a collision course with planet Earth. Currently one or two of these so called ‘Near Earth Objects’ [NEOs] are being recorded each day but fortunately for humankind the vast majority are the size of a human fist and pose no threat. Nevertheless, the presence of large impact craters on Earth provides dramatic evidence of past collisions, some of which have been catastrophic for the planet’s species, as was the case with the dinosaurs. This week, experts from across Europe and the US met in London to consider current and future efforts to monitor NEOs in order to better predict those with Earth impacting trajectories, since it is inevitable that a catastrophic collision will happen again in the future.

Professor Monica Grady, a leading expert on meteorites from the Open University explains, “It’s simply a question of when, not if, a NEO collides with the Earth. Many of the smaller objects break up when they reach Earth’s atmosphere and have no impact. However, a NEO larger than 1 km will collide with Earth every few hundred thousand years and an NEO larger than 6 km, which could cause a mass extinction, will collide with Earth every hundred million years. And we are overdue for a big one!”

NEO’s, remnants from the formation of the inner planets, range in size from 10 metre objects to those in excess of 1 km. It is estimated that 100 fist sized meteorites, fragments of NEO’s, fall to Earth on a daily basis but larger objects impact with Earth on a much less regular basis.

Professor Alan Fitzsimmons from Queens University Belfast is a UK astronomer (supported by the Particle Physics and Astronomy Research Council) involved in the study of NEO’s, using telescope facilities such as the European Southern Observatory’s Very Large telescope in Chile, the Isaac Newton Telescope in La Palma and the Faulkes Telescope in Hawaii. He said, “By the end of the decade as new dedicated facilities, such as the Pan-STARR project in Hawaii, come on line there will be a quantum leap in the discovery of NEO’s – with rates anticipated to increase to hundreds per day. This will provide us with a greater ability to determine which ones are on a potential Earth colliding trajectory.”

Studies of one such asteroid (Apophis), which was discovered in June2004, have shown that there is a low probability that this object will impact the Earth in 2036. This has raised a whole series of issues about the prospect of deflecting the asteroid before a very close approach in 2029. Government’s across the world are looking at the issue and in particular at the technologies and methods required to carry out an asteroid deflection manoeuvre in space.

The European Space Agency’s NEO Mission Advisory Panel (NEOMAP), of which Professor Fitzsimmons is a member, has selected “Don Quixote” as their preferred option for an asteroid deflecting test mission. Don Quixote would comprise two spacecraft – one of them (Hildalgo) would impact the asteroid at a very high relative speed while the second spacecraft (Sancho) would arrive earlier to monitor the effect of the impact to measure the variation of the asteroid’s orbital parameters. This attempt to deflect an incoming NEO would act as a precursor mission with the primary objective of modifying the trajectory of a “non-threatening” asteroid.

Richard Tremayne-Smith, from the British National Space Centre, heads up the coordination of UK NEO activity and helps provide an international lead on NEO efforts on the issue. He said, “NEO collisions are the only known natural disaster that can be avoided by applying appropriate technology – and so it is the interest of Governments across the World to take interest in this global issue. Here in the UK we take the matter very seriously and progress is being made in taking forward the recommendations of the UK NEO Task Force Report in an international arena.”

The current method of studying NEOs is achieved through a combination of 3 different methods:- the study of meteorites to understand their structure and composition; earth based astronomical observations of asteroids; and space based observations and encounters with asteroids.

Much can be understood about the nature of asteroids from the study of meteorites which are fragments of asteroids that have broken up and fallen to Earth. Professor Grady explains how the ground based study of meteorites is crucial to future plans for dealing with asteroids.

“In order to define successful strategies for deflecting asteroids that might collide with Earth, it is essential to understand the material properties such as the composition, strength and porosity of asteroids. By putting together such information with data from both ground based and space based studies we can begin to build an accurate picture of these diverse phenomena.”

UK scientists are involved in a number of other missions which will also be investigating the properties of asteroids and comets. This includes NASA’s Stardust mission which collected samples from Comet Wild 2 in January 2004. These samples are set to return to Earth in January 2006 and scientists from the Open University will be involved in their analysis. The European Space Agency’s Rosetta mission which is currently on route to Comet Churyumov-Gerasimenko will pass by two asteroids, Steins and Lutetia, before reaching its target in 2014, gathering data about their properties as it flies past.

Original Source: PPARC News Release

Venus Express Photographs the Earth and Moon

Earth and Moon system as seen by VIRTIS-M. Image credit: ESA Click to enlarge
A recent check of the VIRTIS imaging spectrometer during the Venus Express commissioning phase has allowed its first remote-sensing data to be acquired, using Earth and the Moon as a reference.

After a successful in-flight checkout of the spacecraft’s systems in the first ten days of flight, the ESOC operations team is now verifying the health and functioning of all the Venus Express instruments. These observations were made as part of this checkout.

Of course the very large distance that Venus Express has travelled since its launch makes these images of limited interest to the general public, but to the scientific team it confirms the excellent operation of their instrument.

This gives them confidence of spectacular results when the spacecraft reaches Venus where similar measurements will be made hundreds times closer.

Only two weeks after the launch, VIRTIS, the Ultraviolet/Visible/Near-Infrared mapping spectrometer, has been able to make its first planetary observations, capturing the Earth-Moon system.

“The observations were made from 3.5 million kilometres away, with a phase angle of 65 degrees, meaning that 65% of the Earth’s disk was illuminated by the Sun, providing observations of both the day and night sides of the Earth,” explains Guiseppe Piccioni, one of the two Principal Investigators (PI).

These Earth observations will be used to test the instrument on a real planetary case, before Venus approach.

“A comparison of Venus spectra with Earth spectra with the same instrument will also be of interest for textbook illustration of the comparison between the two planets,” explained Pierre Drossart, the other PI.

The Moon has also been observed, providing additional observations of particular interest for calibrating the intrument.

The VIRTIS instrument on Venus Express is a twin of the same instrument on Rosetta, and similar observations were sent back by Rosetta in March 2005, so comparisons of the two sets of observations will be very useful for calibration purposes. The VIRTIS instrument is led jointly by INAF-IASF, Rome, Italy, and Observatoire de Paris, France.

Original Source: ESA Portal

AMBER Instrument Combines Three Telescopes

Artist’s impression of the stellar object MWC 297. Image credit: ESO Click to enlarge
Using the newly installed AMBER instrument on ESO’s Very Large Telescope Interferometer, which combines the light from two or three 8.2-m Unit Telescopes thereby amounting to observe with a telescope of 40 to 90 metres in diameter, two international teams of astronomers observed with unprecedented detail the environment of two stars. One is a young, still-forming star and the new results provide useful information on the conditions leading to the creation of planets. The other is on the contrary a star entering the latest stages of its life. The astronomers found, in both cases, evidence for a surrounding disc.

A first group of astronomers, led by Fabien Malbet from the Laboratoire d’Astrophysique de Grenoble, France, studied the young 10-solar mass stellar object MWC 297, which is still in the very early stage of its life.

“This scientific breakthrough opens the doors to an especially detailed scrutiny of the very close environment of young stars and will bring us invaluable knowledge on how planets form”, says Malbet.

It is amazing to see the amount of details the astronomers could achieve while observing an object located more than 800 light-years away and hidden by a large amount of gas and dust. They found the object to be surrounded by a proto-planetary disc extending to about the size of our Solar System, but truncated in his inner part until about half the distance between the Earth and the Sun. Moreover, the scientists found the object to be surrounded by an outflowing wind, the velocity of which increased by a factor 9, from about 70 km/s near the disc to 600 km/s in the polar regions.

“The reason why the inner part of the disc should be truncated is not clear”, adds Malbet. “This raises new questions on the physics of the environment of intermediate mass young stars.”

The astronomers now plan to perform observations with AMBER with three telescopes to measure departure from symmetry of the material around MWC 297.

Another international team of astronomers [5] has just done this kind of observations to study the surroundings of a star entering the last stages of its life. In a world premiere, they combined with AMBER the light of three 8.2-m Unit Telescopes of the VLT, gaining unsurpassed knowledge on a B[e] supergiant, a star that is more luminous than our Sun by more than a factor 10,000. This supergiant star is located ten times further away than MCW 297 at more than 8,000 light-years.

The astronomers made the observations to investigate the crucial questions concerning the origin, geometry, and physical structure of the envelope surrounding the star.

These unique observations have allowed the scientists to see structures on scale as small as 1.8 thousandths of an arcsecond – that is the same as distinguishing between the headlights of a car from about 230,000 km away, or slightly less than 2/3 of the distance from the Earth to the Moon!

Armando Domiciano de Souza, from the MPI f??bf?r Radioastronomie in Bonn (Germany) and his colleagues made also use of the MIDI instrument on the VLTI [6], using two Unit Telescopes. Using their full dataset, they found the circumstellar envelope around the supergiant to be non-spherical, most probably because the star is also surrounded by an equatorial disc made of hot dust and a strong polar wind.

“These observations are really opening the doors for a new era of understanding of these complex and intriguing objects”, says Domiciano de Souza.

“Such results could be achieved only due to the spectral resolution as well as spatial resolution that AMBER offers. There isn’t any similar instrument in the world,” concludes Fabien Malbet, who is also the AMBER Project Scientist.

Original Source: ESO News Release

Death Star Mimas and Its Giant Crater Herschel

Mimas standing in front of Saturn’s rings. Image credit: NASA/JPL/SSI Click to enlarge
Impact-battered Mimas steps in front of Saturn’s rings, showing off its giant 130-kilometer (80-mile) wide crater Herschel.

The illuminated terrain seen here is on the moon’s leading hemisphere. North on Mimas is up and rotated 20 degrees to the left. Mimas is 397 kilometers (247 miles) across.

The image was taken in visible green light with the Cassini narrow-angle camera on Oct. 13, 2005 at a distance of approximately 711,000 kilometers (442,000 miles) from Mimas and at a Sun-Mimas-spacecraft, or phase, angle of 112 degrees. The image scale is 4 kilometers (3 miles) per pixel.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA’s Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo.

For more information about the Cassini-Huygens mission visit http://saturn.jpl.nasa.gov . The Cassini imaging team homepage is at http://ciclops.org .

Original source: NASA/JPL/SSI News Release

Carthage Linea on Dione

Dione’s icy surface. Image credit: NASA/JPL/SSI Click to enlarge
Dione’s icy surface is scarred by craters and sliced up by multiple generations of geologically-young bright fractures. Numerous fine, roughly-parallel linear grooves run across the terrain in the upper left corner.

Most of the craters seen here have bright walls and dark deposits of material on their floors. As on other Saturnian moons, rockslides on Dione (1,126 kilometers, or 700 miles across) may reveal cleaner ice, while the darker materials accumulate in areas of lower topography and lower slope (e.g. crater floors and the bases of scarps).

The terrain seen here is centered at 15.4 degrees north latitude, 330.3 degrees west longitude, in a region called Carthage Linea. North on Dione is up and rotated 50 degrees to the left.

The image was taken in visible green light with the Cassini narrow-angle camera on Oct. 11, 2005, at a distance of approximately 19,600 kilometers (12,200 miles) from Dione. The image scale is about 230 meters (760 feet) per pixel.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA’s Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo.

For more information about the Cassini-Huygens mission visit http://saturn.jpl.nasa.gov . The Cassini imaging team homepage is at http://ciclops.org .

Original Source: NASA/JPL/SSI News Release

Hayabusa Landed on Itokawa Successfully

Hayabusa descending on Itokawa before landing. Image credit: JAXA Click to enlarge
Hayabusa attempted its first soft-landing on Itokawa for the purpose of touch down and sample collection on November 20-21, 2005. Below is the data information with the related advance report on its status.

Hayabusa started descending at 9:00pm on Nov. 19th, 2005 (JST) from 1km in altitude. The guidance and navigation during the process of approach was operated normally, and at 4:33am on Nov. 20th, the last approach of vertical descent was commanded from ground, of which soft-landing was successfully achieved almost on the designated landing site of the surface. Deviation from the target point is now under investigation but presumed within a margin of 30cm.

The velocity at the time of starting descent was 12cm/sec. At the altitude 54m at 5:28am, wire-cutting of target marker was commanded, after which, at 5:30am at altitude 40m, the spacecraft autonomously reduced its own speed by 9cm/sec to have substantially separated the target marker. It means that Hayabusa’s speed became 3 cm/sec. Separation and freefall of the marker was confirmed from the image as well as from descending velocity of the spacecraft at the time of reducing the speed. The marker is presumed to have landed on southwest of MUSES Sea.

Hayabusa then switched its range measurement from Laser Altimeter (LIDAR) to Laser Range Finder (LRF) at the altitude 35m and moved to hovering by reducing descending speed to zero at 25m above the surface, below where Hayabusa, at 5:40am at altitude 17m, let itself to freefall, functioning itself to the attitude control mode adjustable to the shapes of the asteroid surface. At this point, the spacecraft autonomously stopped telemetry transmission to the earth (as scheduled) to have changed to transmission with beacon mode more efficient for Doppler measurement by switching to low gain antenna (LGA) coverable larger area.

Since then, checking of the onboard instruments was not possible on a real time basis (as scheduled), but as a result of analyzing the data recorded onboard and sent back to the earth in the past two days, Hayabusa seemed to have autonomously judged to abort descending and attempted emergency ascent because its Fan Beam sensors for obstacle checking detected some kind of catch-light. Allowable margin is set for Hayabusa for its attitude control, in the case the spacecraft takes off the ground by accelerating the velocity on its own. Under such circumstances, the then spacecraft’s attitude was out of the margin, because of which continuing of safe descent was consequently chosen. As a result, Hayabusa did not activate its Touch Down Sensor function.

At the timepoint of Nov. 21, Hayabusa was judged not to have landed on the surface. According to the replayed data, however, it was confirmed that Hayabusa stayed on Itokawa by keeping contact with the surface for about 30 minutes after having softly bounced twice before settling. This can be verified by the data history of LRF and also by attitude control record.

This phenomenon took place during switching interval from Deep Space Network (DSN) of NASA to Usuda Deep Space Center, because of which the incident was not detected by ground Doppler measurement. The descending speed at the time of bouncing twice was 10cm/sec. respectively. Serious damage to the spacecraft has not been found yet except heating sensor that may need checking in some part of its instrument.

Hayabusa kept steady contacting with the surface until signaled from ground to make emergency takeoff at 6:58am (JST). The Touch Down Sensor supposed to function for sampling did not work because of the reason above stated, for which reason firing of projector was not implemented in spite of the fact that the spacecraft actually made landing. The attitude at landing is so presumed that the both bottom ends of +X axis of sampler horn and either the spacecraft or tip end of the solar panels was in contact with the surface. Hayabusa became the world-first spacecraft that took off from the asteroid. Really speaking, it is the world-first departure from an celestial body except the moon.

After departure from the asteroid by ground command, Hayabusa moved into safe mode due to the unsteady communication line and the conflict with onboard controlling and computing priority. The comeback from safety mode to normal 3-axis control mode needed full two days of Nov. 21 and 22. Owing to this reason, replaying of the data recorded on 20th is still midway, which means the possibility to reveal much more new information through further analysis of the data. As of now, the detailed image of the landing site to know its exact location has not been processed yet. Hayabusa is now on the way to fly over to the position to enable landing and sampling sequence again. It’s not certain yet if or not descent operation will be able to carry out from the night of Nov. 25 (JST). We will announce our schedule in the evening of Nov. 24.

Descending and landing operation will all depend upon availability of DSN of NASA. We would like to express our sincere gratitude for cooperation of NASA for tracking networks including backup stations.

Original Source: JAXA News Release