Astronomers are Working on a 3D map of Cosmic Dawn

The HERA radio telescope consists of 350 dishes pointed upward to detect 21-centimeter emissions from the early Universe. Credit: HERA Partnership

The frontiers of astronomy are being pushed regularly these days thanks to next-generation telescopes and scientific collaborations. Even so, astronomers are still waiting to peel back the veil of the cosmic “Dark Ages,” which lasted from roughly 370,000 to 1 billion years after the Big Bang, where the Universe was shrouded with light-obscuring neutral hydrogen. The first stars and galaxies formed during this same period (ca. 100 to 500 million years), slowly dispelling the “darkness.” This period is known as the Epoch of Reionization, or as many astronomers call it: Cosmic Dawn.

By probing this period with advanced radio telescopes, astronomers will gain valuable insights into how the first galaxies formed and evolved. This is the purpose of the Hydrogen Epoch of Reionization Array (HERA), a radio telescope dedicated to observing the large-scale structure of the cosmos during and before the Epoch of Reionization located in the Karoo desert in South Africa. In a recent paper, the HERA Collaboration reports how it doubled the array’s sensitivity and how their observations will lead to the first 3D map of Cosmic Dawn.

Continue reading “Astronomers are Working on a 3D map of Cosmic Dawn”

Future Space Telescopes Could be 100 Meters Across, Constructed in Space, and Then Bent Into a Precise Shape

Graphic depiction of Bend-Forming of Large Electrostatically Actuated Space Structures. Credit: Zachary Cordero

It is an exciting time for astronomers and cosmologists. Since the James Webb Space Telescope (JWST), astronomers have been treated to the most vivid and detailed images of the Universe ever taken. Webb‘s powerful infrared imagers, spectrometers, and coronographs will allow for even more in the near future, including everything from surveys of the early Universe to direct imaging studies of exoplanets. Moreover, several next-generation telescopes will become operational in the coming years with 30-meter (~98.5 feet) primary mirrors, adaptive optics, spectrometers, and coronographs.

Even with these impressive instruments, astronomers and cosmologists look forward to an era when even more sophisticated and powerful telescopes are available. For example, Zachary Cordero 
of the Massachusetts Institute of Technology (MIT) recently proposed a telescope with a 100-meter (328-foot) primary mirror that would be autonomously constructed in space and bent into shape by electrostatic actuators. His proposal was one of several concepts selected this year by the NASA Innovative Advanced Concepts (NIAC) program for Phase I development.

Continue reading “Future Space Telescopes Could be 100 Meters Across, Constructed in Space, and Then Bent Into a Precise Shape”

NASA has Simulated a Tiny Part of the Moon Here on Earth

Using the Lunar Lab and Regolith Testbeds at NASA’s Ames Research Center, a team created this simulated lunar environment to study lighting conditions experienced at the unexplored poles of the Moon. Credit: NASA/Uland Wong.

Before going to the Moon, the Apollo astronauts trained at various sites on Earth that best approximated the lunar surface, such as the volcanic regions Iceland and Hawaii and deserts in the US Southwest.  To help prepare for upcoming robotic and human Artemis missions, a newly upgraded “mini-Moon” lunar testbed will allow astronauts and robots to test out realistic conditions on the Moon including rough terrain and unusual sunlight.

Continue reading “NASA has Simulated a Tiny Part of the Moon Here on Earth”

Astronomers Prepare to Launch LuSEE Night, A Test Observatory on the Far Side of the Moon

Artist's illustration of a radio telescope inside a crater on the Moon. Credit: NASA JPL

Astronomers have not yet been able to map large portions of the radio emissions from our universe because of interference from the Earth itself. A team of astronomers hopes to change that, beginning with the LuSEE Night mission to the far side of the Moon. It will launch in 2025 and chart a new pathway to Lunar observatories.

Continue reading “Astronomers Prepare to Launch LuSEE Night, A Test Observatory on the Far Side of the Moon”

Astronomers Find 25 Fast Radio Bursts That Repeat on a Regular Basis

CHIME consists of four metal "half-pipes", each one 100 meters long. Image Credit: CHIME/Andre Renard, Dunlap Institute.
CHIME consists of four metal "half-pipes", each one 100 meters long. Image Credit: CHIME/Andre Renard, Dunlap Institute.

Like Gravitational Waves (GWs) and Gamma-Ray Bursts (GRBs), Fast Radio Bursts (FRBs) are one of the most powerful and mysterious astronomical phenomena today. These transient events consist of bursts that put out more energy in a millisecond than the Sun does in three days. While most bursts last mere milliseconds, there have been rare cases where FRBs were found repeating. While astronomers are still unsure what causes them and opinions vary, dedicated observatories and international collaborations have dramatically increased the number of events available for study.

A leading observatory is the Canadian Hydrogen Intensity Mapping Experiment (CHIME), a next-generation radio telescope located at the Dominion Radio Astrophysical Observatory (DRAO) in British Columbia, Canada. Thanks to its large field of view and broad frequency coverage, this telescope is an indispensable tool for detecting FRBs (more than 1000 sources to date!) Using a new type of algorithm, the CHIME/FRB Collaboration found evidence of 25 new repeating FRBs in CHIME data that were detected between 2019 and 2021.

Continue reading “Astronomers Find 25 Fast Radio Bursts That Repeat on a Regular Basis”

Molecular Clouds Have Long Lives By Constantly Reassembling Themselves

This is a two-panel mosaic of part of the Taurus Giant Molecular Cloud, the nearest active star-forming region to Earth. The darkest regions are where stars are being born. Inside these vast clouds, complex chemicals are also forming. Image Credit: Adam Block /Steward Observatory/University of Arizona

Astronomers have recently discovered that giant clouds of molecular hydrogen, the birthplace of stars, can live for tens of millions of years despite the facts that individual molecules are constantly getting destroyed and reassembled. This new research helps place a crucial piece of understanding in our overall picture of how stars are born.

Continue reading “Molecular Clouds Have Long Lives By Constantly Reassembling Themselves”

Astronomers See Flashes on the Sun That Could be a Sign of an Upcoming Flare

A moderate solar flare erupts on the sun July 8, 2014 in this image from NASA's Solar Dynamics Observatory. Credit: NASA/SDO

Using data from the Solar Dynamics Observatory, scientists have discovered new clues that could help predict when and where the next solar flare might blast from the Sun.

Researchers were able to identify small flashes in the upper layers of the corona – the Sun’s atmosphere – found above regions that would later flare in energetic bursts of light and particles released from the Sun. The scientists compared the flashes to small sparklers before the big fireworks.

Continue reading “Astronomers See Flashes on the Sun That Could be a Sign of an Upcoming Flare”

Does Failing to Detect Aliens Mean We’ll Never Be Contacted?

Image of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) Parkes radio telescope taken in 1969. (Credit: CSIRO; licensed under the Creative Commons Attribution 3.0 Unported license.)

In a recent paper submitted to The Astronomical Journal in November 2022, a scientist at the Swiss Federal Institute of Technology Lausanne quantifies how the Earth has not heard a radio signal from an extraterrestrial technological civilization over the course of approximately the last 60 years, which is when the Search for Extraterrestrial Intelligence (SETI) began listening for such signals. They also quantify the potential likelihood pertaining to when we might hear a signal, along with recommending potential strategies that could aid in the ongoing search for detecting a signal from an extraterrestrial technological civilization.

Continue reading “Does Failing to Detect Aliens Mean We’ll Never Be Contacted?”

A Martian Meteorite Contains Organic Compounds. The Raw Ingredients for Life?

Martian meteorite Tissint. (Image Credit: Dr. Ludovic Ferriere (study co-author); Natural History Museum Vienna)

In a recent study published in Sciences Advances, an international team of scientists led by the Technical University of Munich examined the Martian meteorite Tissint, which fell near the village of Tissint, Morocco, on July 18, 2011, with pieces of the meteorite found as far as approximately 50 kilometers (30 miles) from the village. What makes Tissint intriguing is the presence of a “huge organic diversity”, as noted in the study, which could help scientists better understand if life ever existed on Mars, and even the geologic history of Earth, as well.

Continue reading “A Martian Meteorite Contains Organic Compounds. The Raw Ingredients for Life?”