First Light of the Universe?

Artist illustration of the early Universe. Image credit: NASA/JPL-Caltech/R. Hurt (SSC). Click to enlarge.
Scientists using NASA’s Spitzer Space Telescope say they have detected light that may be from the earliest objects in the universe. If confirmed, the observation provides a glimpse of an era more than 13 billion years ago when, after the fading embers of the theorized Big Bang gave way to millions of years of pervasive darkness, the universe came alive.

This light could be from the very first stars or perhaps from hot gas falling into the first black holes. The science team, based at NASA Goddard Space Flight Center in Greenbelt, Md., describes the observation as seeing the glow of a distant city at night from an airplane. The light is too distant and feeble to resolve individual objects.

“We think we are seeing the collective light from millions of the first objects to form in the universe,” said Dr. Alexander Kashlinsky, Science Systems and Applications scientist and lead author on the Nature article that appeared in the Nov. 3 issue. “The objects disappeared eons ago, yet their light is still traveling across the universe.”

Scientists theorize that space, time and matter originated 13.7 billion years ago in a Big Bang. Another 200 million years would pass before the era of first starlight. A 10-hour observation by Spitzer’s infrared array camera in the constellation Draco captured a diffuse glow of infrared light, lower in energy than optical light and invisible to us. The Goddard team says that this glow is likely from Population III stars, a hypothesized class of stars thought to have formed before all others. (Population I and II stars, named by order of their discovery, comprise the familiar types of stars we see at night.)

Theorists say the first stars were likely over a hundred times more massive than Earth’s sun and extremely hot, bright, and short-lived, each one burning for only a few million years. The ultraviolet light that Population III stars emitted would be redshifted, or stretched to lower energies, by the universe’s expansion. That light should now be detectable in the infrared.

“This deep observation was filled with familiar-looking stars and galaxies,” said Dr. John Mather, senior project scientist for JWST and a co-author on the Nature article. “We removed everything we knew—all the stars and galaxies both near and far. We were left with a picture of part of the sky with no stars or galaxies, but it still had this infrared glow with giant blobs that we think could be the glow from the very first stars.”

This new Spitzer discovery agrees with observations from the NASA Cosmic Background Explorer (COBE) satellite from the 1990s that suggested there may be an infrared background that could not be attributed to known stars. It also supports observations from the NASA Wilkinson Microwave Anisotropy Probe from 2003, which estimated that stars first ignited 200 million to 400 million years after the Big Bang.

“This difficult measurement pushes the instrument to performance limits that were not anticipated in its design,” said team member Dr. S. Harvey Moseley, instrument scientist for Spitzer. “We have worked very hard to rule out other sources for the signal we observed.”

The low noise and high resolution of Spitzer’s infrared array camera enabled the team to remove the fog of foreground galaxies, made of later stellar populations, until the cumulative light from the first light dominated the signal on large angular scales. The team, which also includes Dr. Richard Arendt, Science Systems and Applications scientist, noted that future missions, such as NASA’s James Webb Space Telescope, will find the first individual clumps of these stars or the individual exploding stars that might have made the first black holes.

This analysis was partially funded through the National Science Foundation. The Jet Propulsion Laboratory, Pasadena, Calif., manages the Spitzer mission for NASA. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology in Pasadena. NASA Goddard built Spitzer’s infrared array camera which took the observations. The instrument’s principal investigator is Dr. Giovanni Fazio, Smithsonian Astrophysical Observatory, Cambridge, Mass.

Original Source: Spitzer News Release

Methane Producing Bacteria Found in the Desert

View of the desert in Utah. Image credit: Mars Desert Research Station. Click to enlarge.
Evidence of methane-producing organisms can be found in inhospitable soil environments much like those found on the surface of Mars, according to experiments undertaken by scientists and students from the Keck School of Medicine of USC and the University of Arkansas and published online in the journal Icarus.

The results, they said, provide ample impetus for similar “biodetection experiments” to be considered for future missions to Mars.

“Methane-producing organisms are the ones most likely to be found on Mars,” noted Joseph Miller, associate professor of cell and neurobiology in the Keck School and one of the study’s lead researchers. “And, in fact, methane was detected on Mars last year.”

Methane is considered to be a biological signature for certain living organisms that metabolize organic matter under conditions of low or no oxygen.

Terrestrial methanogens (methane-producers) are typically found in environments largely protected from atmospheric oxygen, such as peat bogs, oceanic methane ices and anoxic levels of the ocean. But they previously had not been detected in an arid desert environment.

To see if methane could be found in Mars-like soil, the investigators collected soil and vapor samples from the arid environment of the Mars Desert Research Station in Utah and then compared them with vapor samples taken from the Idaho High Desert and soil samples from Death Valley, the Arctic and the Atacama desert in Chile.

Three of five vapor samples from the Utah site showed the presence of methane; there was no methane found in any of the vapor samples from Idaho. Similarly, while five of 40 soil samples from Utah produced methane after the addition of growth medium to the samples – indicating that the methane was being given off by a biological organism, most likely a bacterium – none of the other soil samples showed signs of methane production.

Finding methane in the Utah desert is no guarantee that methane-producers exist on Mars, said Miller, who previously has analyzed data from the Viking Lander missions and found that soil samples taken in the 1970s from the Martian surface exhibited a circadian rhythm in what appeared to be nutrient metabolism, much like that present in terrestrial microbes.

However, Miller said, this recent experiment does provide “proof of principle [in that] it improves the case that such bacteria can and might exist on the Martian surface.” And, he added, that surely warrants further investigation during future missions to Mars.

In conclusion, the researchers wrote, “The detection of methane, apparently of biological origin, in terrestrial desert regolith bodes well for future biodetection experiments in at least partially analogous Martian environments.”

Original Source: USC News Release

That Neutron Star Should Be a Black Hole

Westerlund 1 star cluster. Image credit: Chandra. Click to enlarge.
A very massive star collapsed to form a neutron star and not a black hole as expected, according to new results from NASA’s Chandra X-ray Observatory. This discovery shows that nature has a harder time making black holes than previously thought.

Scientists found this neutron star — a dense whirling ball of neutrons about 12 miles in diameter — in an extremely young star cluster. Astronomers were able to use well-determined properties of other stars in the cluster to deduce that the progenitor of this neutron star was at least 40 times the mass of the Sun.

“Our discovery shows that some of the most massive stars do not collapse to form black holes as predicted, but instead form neutron stars,” said Michael Muno, a UCLA postdoctoral Hubble Fellow and lead author of a paper to be published in The Astrophysical Journal Letters.

When very massive stars make neutron stars and not black holes, they will have a greater influence on the composition of future generations of stars. When the star collapses to form the neutron star, more than 95% of its mass, much of which is metal-rich material from its core, is returned to the space around it.

“This means that enormous amounts of heavy elements are put back into circulation and can form other stars and planets,” said J. Simon Clark of the Open University in the United Kingdom.

Astronomers do not completely understand how massive a star must be to form a black hole rather than a neutron star. The most reliable method for estimating the mass of the progenitor star is to show that the neutron star or black hole is a member of a cluster of stars, all of which are close to the same age.

Because more massive stars evolve faster than less massive ones, the mass of a star can be estimated from if its evolutionary stage is known. Neutron stars and black holes are the end stages in the evolution of a star, so their progenitors must have been among the most massive stars in the cluster.

Muno and colleagues discovered a pulsing neutron star in a cluster of stars known as Westerlund 1. This cluster contains a hundred thousand or more stars in a region only 30 light years across, which suggests that all the stars were born in a single episode of star formation. Based on optical properties such as brightness and color some of the normal stars in the cluster are known to have masses of about 40 suns. Since the progenitor of the neutron star has already exploded as a supernova, its mass must have been more than 40 solar masses.

Introductory astronomy courses sometimes teach that stars with more than 25 solar masses become black holes — a concept that until recently had no observational evidence to test it. However, some theories allow such massive stars to avoid becoming black holes. For example, theoretical calculations by Alexander Heger of the University of Chicago and colleagues indicate that extremely massive stars blow off mass so effectively during their lives that they leave neutron stars when they go supernovae. Assuming that the neutron star in Westerlund 1 is one of these, it raises the question of where the black holes observed in the Milky Way and other galaxies come from.

Other factors, such as the chemical composition of the star, how rapidly it is rotating, or the strength of its magnetic field might dictate whether a massive star leaves behind a neutron star or a black hole. The theory for stars of normal chemical composition leaves a small window of initial masses – between about 25 and somewhat less than 40 solar masses – for the formation of black holes from the evolution of single massive stars. The identification of additional neutron stars or the discovery of black holes in young star clusters should further constrain the masses and properties of neutron star and black hole progenitors.

The work described by Muno was based on two Chandra observations on May 22 and June 18, 2005. NASA’s Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency’s Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.

Additional information and images are available at: http://chandra.harvard.edu
and http://chandra.nasa.gov

Original Source: Chandra News Release

Mars Express Instrument Working Again

Artist illustration of Mars Express. Image credit: ESA. Click to enlarge.
The Planetary Fourier Spectrometer (PFS) on board ESA’s Mars Express spacecraft is now back in operation after a malfunction, reported a few months ago.

The instrument had been successfully investigating the chemical composition of the Martian atmosphere since the beginning of 2004, when Mars Express began orbiting the Red Planet.

PFS is a very sensitive instrument, capable of measuring the distribution of the major gaseous components of the atmosphere, the vertical distribution of their temperature and pressure, and determining their variation and global circulation during the different Martian seasons.

PFS is also capable of detecting minor gaseous species and the presence of dust in the atmosphere and, during favourable observing conditions, even deducing the mineralogical composition of the soil.

PFS was the first instrument ever to make direct ‘in situ’ measurements of methane in the atmosphere of Mars, and provided first indications of traces of formaldehyde, both candidate ingredients for life.

To identify the nature of chemical compounds of the Martian atmosphere and their physical status, PFS detects the distinctive infrared radiation re-emitted by different molecules when they are exposed to the light of the Sun.

The complex PFS instrument uses the interferometry technique, a high-precision measurement method in which beams of electromagnetic radiation are split and subsequently recombined after travelling different path-lengths. The beams interfere and produce an ‘interference pattern’.

This pattern, or ‘interferogram’, is then used to measure physical properties such as temperature, pressure and chemical composition.

The PFS instrument was unable to produce scientific data from July to September 2005. A series of tests and investigations took place between September and October this year.

The ‘pendulum motor’, used to drive various elements in the instrument optics, was shown to be at fault. The recovery was made possible through using internal instrument redundancy.

After switching to the instrument’s back-up motor, more powerful than the first one – the instrument has been shown to be able to produce science data just as before. Following this recovery activity, PFS will start to take new measurements routinely in early November 2005.

Original Source: ESA News Release

Pinpointing Huygens

The area marked in yellow is the region imaged by Huygens as it landed. Image credit: NASA/JPL/SSI. Click to enlarge.
The Cassini spacecraft carried the European Space Agency’s Huygens probe to Saturn and released it in December 2004. The probe landed on Titan Jan. 14, 2005, acquiring a set of images using the descent imager/spectral radiometer camera as it parachuted to the surface.

As Cassini continued to orbit Saturn, its imaging science subsystem and visual and infrared mapping spectrometer mapped the region where the Huygens probe landed. On Friday, Oct. 28, 2005, Cassini’s radar instrument provided the highest resolution orbital data yet of this area.

The two images shown here tell the story. On the left, in color, is a composite of the imaging camera and infrared data (red areas are brighter and blue darker, as seen in infrared). On the right is the synthetic aperture radar image. The Huygens descent images are shown inset on the left image and outlined in yellow on the right. The magenta cross in both images shows the best estimate of the actual Huygens landing site. This is a preliminary result, based on the best information available at the present time.

In the left image, the brighter areas seen by the Huygens camera correspond to the large area depicted in red and yellow. On closer inspection, bright features within the Huygens mosaic seem to correspond to smaller features in the map composed of data from the visual and infrared spectrometer and imaging camera. On the right, the correspondence is less clear. In radar images bright features are usually rougher, so one would not necessarily expect an obvious connection.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA’s Science Mission Directorate, Washington, D.C. The Cassini orbiter was designed, developed and assembled at JPL. The radar instrument team is based at JPL, working with team members from the United States and several European countries. The visual and infrared mapping spectrometer team is based at the University of Arizona. The imaging operations center is based at the Space Science Institute in Boulder, Colo.

For more information about the Cassini-Huygens mission visit http://saturn.jpl.nasa.gov.

Original Source: NASA/JPL/SSI News Release

Massive Star Has a Hot Partner

Eta Carinae. Image credit: Hubble. Click to enlarge.
Scientists using NASA’s Far Ultraviolet Spectroscopic Explorer satellite made the first direct detection of a companion star of Eta Carinae. Eta Carinae is one of the most massive and unusual stars in the Milky Way galaxy. The detection was made possible by the high temperature of the companion star and the unique sensitivity of the satellite at the shortest ultraviolet wavelengths.

Eta Carinae is an unstable star thought to be rapidly approaching the final stage of its life. It is clearly visible from the southern hemisphere and has been the subject of intense studies for decades. This mysterious star is located about 7,500 light-years from Earth in the constellation Carina. Scientists thought a companion star in orbit around Eta Carinae might explain some of its strange properties, but researchers lacked direct evidence a companion star existed.

“Until now, Eta Carinae’s partner has evaded direct detection,” said Dr. Rosina Iping, a research scientist at Catholic University of America in Washington. “This discovery significantly advances our understanding of the enigmatic star.”

Evidence that Eta Carinae might be a double star system was inferred from a repeating pattern of changes in visual, X-ray, radio and infrared light over approximately 5.5 years. Astronomers thought a second star in a 5.5 year orbit around Eta Carinae might cause the repeated changes in its light. The strongest indirect evidence supporting the double star theory is that once every 5.5 years, the X-rays coming from the system disappear for about three months. Eta Carinae is too cool to generate X-rays, but it continuously blasts a flow of gas into space as a stellar wind at about 300 miles per second.

If its companion has a similar wind, their stellar winds would collide with enough force to generate the X-rays. This collision region must lie somewhere between the two stars.

As Eta Carinae moves in its orbit, it passes in front of the region where the winds collide, as viewed from Earth. When this occurs, Eta Carinae eclipses the X-rays once every 5.5 years, causing them to disappear. The last X-ray eclipse began on June 29, 2003. The 5.5 year orbit places the companion star only about 10 times farther from Eta Carinae than Earth is from the sun. Eta Carinae is too far away for telescopes to distinguish two stars in such a close orbit.

Another way to find evidence of a double-star system would be to detect the light of the second star, which in this case is much fainter than Eta Carinae. Several scientists searched for light from Eta Carinae’s companion using ground-based telescopes, but none succeeded. Because the companion is thought to be much hotter than Eta Carinae, astronomers reasoned it should be brighter at shorter wavelengths like ultraviolet light. However, it still escaped detection when it was searched for using the ultraviolet capabilities of the Hubble Space Telescope.

Iping and her collaborators used the satellite to detect the companion, because it can see even shorter ultraviolet wavelengths than Hubble. The team observed the far-ultraviolet light from Eta Carinae with the satellite on June 10, 17 and 27, 2003, right before the expected X-ray eclipse. While the far ultraviolet light from Eta Carinae was seen in the observations from June 10 and 17, it vanished on the 27, two days before the X-ray eclipse.

The disappearance of far ultraviolet light so close to the X-ray eclipse implies when Eta Carinae eclipsed the X-rays, it also eclipsed the companion star. The far-ultraviolet light observed prior to the eclipse was from the hotter companion, because Eta Carinae is too cool to emit much far-ultraviolet light.

“This far ultraviolet light comes directly from Eta Carinae’s companion star, the first direct evidence that it exists,” said Dr. George Sonneborn. He is Far Ultraviolet Spectroscopic Explorer Project Scientist at NASA’s Goddard Space Flight Center, Greenbelt, Md. “The companion star is much hotter than Eta Carinae, settling a long-standing mystery about this important star.”

This discovery will be published today in the Astrophysical Journal Letters. Authors include Iping, Sonneborn and Ted Gull of Goddard; Derck Massa of SGT Inc., Greenbelt, Md.; and John Hiller of the University of Pittsburgh. The project is a NASA Explorer mission developed in cooperation with the French and Canadian space agencies by Johns Hopkins University, Baltimore, University of Colorado, Boulder, and University of California, Berkeley. Goddard manages the program for NASA’s Science Mission Directorate. For images and information about the project on the Web, visit:

Original Source: NASA News Release

What If We Burn Everything?

This map represents global temperature anomalies averaged from 2008 through 2012. Credit: NASA Goddard Institute for Space Studies/NASA Goddard's Scientific Visualization Studio.

If humans continue to use fossil fuels in a business-as-usual manner for the next few centuries, the polar ice caps will be depleted, ocean sea levels will rise by seven meters and median air temperatures will soar to 14.5 degrees warmer than current day.

These are the stunning results of climate and carbon cycle model simulations conducted by scientists at Lawrence Livermore National Laboratory. By using a coupled climate and carbon cycle model to look at global climate and carbon cycle changes, the scientists found that the earth would warm by 8 degrees Celsius (14.5 degrees Fahrenheit) if humans use the entire planet’s available fossil fuels by the year 2300.

The jump in temperature would have alarming consequences for the polar ice caps and the ocean, said lead author Govindasamy Bala of the Laboratory’s Energy and Environment Directorate.

In the polar regions alone, the temperature would spike more than 20 degrees Celsius, forcing the land in the region to change from ice and tundra to boreal forests.

“The temperature estimate is actually conservative because the model didn’t take into consideration changing land use such as deforestation and build-out of cities into outlying wilderness areas,” Bala said.

Today’s level of atmospheric carbon dioxide is 380 parts per million (ppm). By the year 2300, the model predicts that amount would nearly quadruple to 1,423 ppm.

In the simulations, soil and living biomass are net carbon sinks, which would extract a significant amount of carbon dioxide that otherwise would remain in the atmosphere from the burning of fossil fuels. The real scenario, however, might be a bit different.

“The land ecosystem would not take up as much carbon dioxide as the model assumes,” Bala said. “In fact in the model, it takes up much more carbon than it would in the real world because the model did not have nitrogen/nutrient limitations to uptake. We also didn’t take into account land use changes, such as the clearing of forests.”

The model shows that ocean uptake of CO² begins to decrease in the 22nd and 23rd centuries due to the warming of the ocean surface that drives CO² fluctuations out of the ocean. It takes longer for the ocean to absorb CO² than biomass and soil.

By the year 2300, about 38 percent and 17 percent of the carbon dioxide released from the burning of all fossil fuels are taken up by land and the ocean, respectively. The remaining 45 percent stays in the atmosphere.

Whether carbon dioxide is released in the atmosphere or the ocean, eventually about 80 percent of CO² will end up in the ocean in a form that will make the ocean more acidic. While the carbon dioxide is in the atmosphere, it could produce adverse climate change. When it enters the ocean, the acidification could be harmful to marine life.

The models predict quite a drastic change not only in the temperature of the oceans but also in its acidity content, which would become especially harmful for marine organisms with shells and skeletal material made out of calcium carbonate.

Calcium carbonate organisms, such as coral, serve as climate stabilizers. When the organisms die, their carbonate shells and skeletons settle to the ocean floor, where some dissolve and some are buried in sediments. These deposits help regulate the chemistry of the ocean and the amount of carbon dioxide in the atmosphere. Earlier Livermore research, however, found that unrestrained release of fossil-fuel carbon dioxide to the atmosphere could threaten extinction for these climate-stabilizing marine organisms.

“The doubled-CO² climate that scientists have warned about for decades is beginning to look like a goal we might attain if we work hard to limit CO² emissions, rather than the terrible outcome that might occur if we do nothing,” said Ken Caldeira of the Department of Global Ecology at the Carnegie Institution and one of the other authors.

Bala said the most drastic changes during the 300-year period would be during the 22nd century, when precipitation change, an increase in atmospheric precipitable water and a decrease in sea ice size are the largest and when emissions rates are the highest. According to the model, sea ice cover disappears almost completely in the northern hemisphere by the year 2150 during northern hemisphere summers.

“We took a very holistic view,” Bala said. “What if we burn everything? It will be a wake-up call in climate change.”

As for global warming skeptics, Bala said the proof is already evident.

“Even if people don’t believe in it today, the evidence will be there in 20 years,” he said. “These are long-term problems.”

He pointed to the 2003 European heat wave and the 2005 Atlantic hurricane season as examples of extreme climate change.

“We definitely know we are going to warm over the next 300 years,” he said. “In reality, we may be worse off than we predict.”

Other Livermore authors include Arthur Mirin and Michael Wickett, along with Christine Delire of ISE-M at the Université Montepellier II.

The research appears in the Nov. 1 issue of the American Meteorological Society’s Journal of Climate.

Founded in 1952, Lawrence Livermore National Laboratory has a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy’s National Nuclear Security Administration.

Original Source: LLNL News Release

Canyons on Dione

Saturn’s moon Dione taken by Cassini. Image credit: NASA/JPL/SSI. Click to enlarge.
The Cassini spacecraft views the far-off wispy canyons of Saturn’s moon Dione and sees an interesting dichotomy between the bright wisps and the bright south polar region at the bottom.

The view looks toward the trailing hemisphere on Dione. North is up. Dione’s diameter is 1,126 kilometers (700 miles).

The image was taken with the Cassini spacecraft’s narrow-angle camera on Sept. 20, 2005, through a filter combination sensitive to polarized green light. The image was acquired at a distance of approximately 2.1 million kilometers (1.3 million miles) from Dione and at a Sun-Dione-spacecraft, or phase, angle of 64 degrees. Resolution in the original image was 12 kilometers (8 miles) per pixel. The image has been magnified by a factor of two to aid visibility.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA’s Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo.

For more information about the Cassini-Huygens mission visit http://saturn.jpl.nasa.gov . The Cassini imaging team homepage is at http://ciclops.org .

Original Source: NASA/JPL News Release

Two New Moons for Pluto?

Pluto and its possible new moons. Image credit: Hubble. Click to enlarge.
Using NASA’s Hubble Space Telescope to probe the ninth planet in our solar system, astronomers discovered that Pluto may have not one, but three moons.

If confirmed, the discovery of the two new moons could offer insights into the nature and evolution of the Pluto system, Kuiper Belt Objects with satellite systems, and the early Kuiper Belt. The Kuiper Belt is a vast region of icy, rocky bodies beyond Neptune’s orbit.

“If, as our new Hubble images indicate, Pluto has not one, but two or three moons, it will become the first body in the Kuiper Belt known to have more than one satellite,” said Hal Weaver of the Johns Hopkins Applied Physics Laboratory, Laurel, Md. He is co-leader of the team that made the discovery.

Pluto was discovered in 1930. Charon, Pluto’s only confirmed moon, was discovered by ground-based observers in 1978. The planet resides 3 billion miles from the sun in the heart of the Kuiper Belt.

“Our result suggests that other bodies in the Kuiper Belt may have more than one moon. It also means that planetary scientists will have to take these new moons into account when modeling the formation of the Pluto system,” said Alan Stern of the Southwest Research Institute in Boulder, Colo. Stern is co-leader of the research team.

The candidate moons, provisionally designated S/2005 P1 and S/2005 P2, were observed to be approximately 27,000 miles (44,000 kilometers) away from Pluto. The objects are roughly two to three times as far from Pluto as Charon.

The team plans to make follow-up Hubble observations in February to confirm that the newly discovered objects are truly Pluto’s moons. Only after confirmation will the International Astronomical Union consider names for S/2005 P1 and S/2005 P2.

The Hubble telescope’s Advanced Camera for Surveys observed the two new candidate moons on May 15, 2005. “The new satellite candidates are roughly 5,000 times fainter than Pluto, but they really stood out in these Hubble images,” said Max Mutchler of the Space Telescope Science Institute and the first team member to identify the satellites. Three days later, Hubble looked at Pluto again. The two objects were still there and appeared to be moving in orbit around Pluto.

“A re-examination of Hubble images taken on June 14, 2002 has essentially confirmed the presence of both P1 and P2 near the predicted locations based on the 2005 Hubble observations,” said Marc Buie of Lowell Observatory, Flagstaff, Ariz., another member of the research team.

The team looked long and hard for other potential moons around Pluto. “These Hubble images represent the most sensitive search yet for objects around Pluto,” said team member Andrew Steffl of the Southwest Research Institute, “and it is unlikely that there are any other moons larger than about 10 miles across in the Pluto system.”

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. The Space Telescope Science Institute in Baltimore conducts Hubble science operations. The Institute is operated for NASA by the Association of Universities for Research in Astronomy, Inc., Washington, under contract with Goddard.

The other team members for this observation are: William J. Merline, John R. Spencer, Eliot Y. Young, and Leslie A. Young, Southwest Research Institute.

Original Source: Hubble News Release

Update: Why isn’t Pluto a planet?

Book Review: Strange Angel

Jack Parsons, born John Whiteside Parsons, grew up in Pasadena, California. Though his family had substantial assets, the depression hit them hard. His life went from being a sole child in a rich family to being just one more member of a shrinking family with quickly disappearing money. An early fascination with space travel from the likes of Jules Verne gave Parsons a great desire to journey off the planet. In pursuing this quest, Parsons took what was then known of black powder and experimented. He varied constituent ingredients, relative compositions and manufacturing techniques. Yet, seldom did he get far from a glorified firecracker. Nevertheless, through trial and error, he was able to manufacture rockets that convinced the military of their usefulness in assisting take-offs (the JATO’s). Not long after, his group launched the first aeroplane flight powered solely by rockets.

With Parsons leading in such a captivating field, a biography would seem likely to focus primarily on accomplishments. Yet Pendle’s work delivers a much broader perspective. Apparently, as much as Parsons wanted to physically fly into the heavens on a rocket machine, he also wanted to journey mentally into other realms. Pendle provides all the details of how Parsons took over the local chapter of religious group, the Thelemas. Free love was in vogue as was much alcohol and the occasional ritual midnight mass. With their leader’s directive being, ‘Do what thou wilt’, there seemed little to inhibit participants’ actions.

These are the two main venues that appear in this book. Rockets and religion. Pendle steps through Parsons’ life from one main event to another. He describes each step in great detail. Housing architecture, real estate deals, and city officials on the take are all background for Parsons’ first appearance in court as an expert witness. Or there’s the Arroyo Seco range with its dry, still air occasionally broken by the blast from experimental rocket engines, swept clean by a deluge of rain, or enjoyed by youths of the area. By giving such a complete view of events and surroundings, Pendle places the reader directly into the times and moments of Parson’s life.

In keeping with this broad view, Pendle expands upon these background notes. There’s a rendition of the life of the Church of Thelema’s leader, Aleister Crowley. Time and again we get portrayals of the residents and architecture of Orange Grove, the street in Pasadena where Parsons spent much of his life. Pendle also shows a good view of some members of Caltech. Tie-ins with local and national science fiction authors abound. Many came to see Parsons or vice versa. There’s even a perception that L. Ron Hubbard’s definitions of Scientology originally came from Hubbard’s association with Parsons.

Perhaps what does get challenging is that these side issues take up so much of the book. There’s California’s culture, Caltech’s inception and growth, the military’s disfavour with rockets and lists of Crowley’s writings. All of these are interesting, some even fascinating, but it’s not always easy to associate with the biography. Further, though there might have been a tight science fiction community at the time, the description of magazine editors and their many stories and editorials makes one think that Pendle had more information than he knew where to insert. As my interest is in the rocketry aspect, I would have preferred more on this topic and less on the other people marginally involved with Parsons.

As well, the missing element in this writing is the lack of conjecture about Parsons himself. There are allusions to a final suicide, or was it an industrial accident? What was it like always being an outsider of Caltech or Aerojet? Why did magick hold such a spell over Parson? With no formal university training, but an encyclopaedic knowledge of chemistry and explosives, why couldn’t or wouldn’t Parsons integrate into research and development groups? These questions arose in my mind, but I kept having more questions and few answers.

Jack Parsons devoted most of his working life to proving and bettering rocket propulsion. His personal life was equally devoted, but to magick and philosophy. George Pendle in his biography Strange Angel colourfully portrays Parsons’ life and the exciting and mystical events that surrounded him. Some people were just never meant to be normal, and the rocket industry can thank Parsons for being one of those people.

Review by Mark Mortimer

Read more reviews online, or purchase a copy from Amazon.com.