Stars Have More Neon Than Previously Believed

Illustration of Convection in Sun-like Star. Image credit: NASA/CXC/M.Weiss. Click to enlarge
NASA’s Chandra X-ray Observatory survey of nearby sun-like stars suggests there is nearly three times more neon in the sun and local universe than previously believed. If true, this would solve a critical problem with understanding how the sun works.

“We use the sun to test how well we understand stars and, to some extent, the rest of the universe,” said Jeremy Drake of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. “But in order to understand the sun, we need to know exactly what it is made of,” he added.

It is not well known how much neon the sun contains. This is critical information for creating theoretical models of the sun. Neon atoms, along with carbon, oxygen and nitrogen, play an important role in how quickly energy flows from nuclear reactions in the sun’s core to its edge, where it then radiates into space.

The rate of this energy flow determines the location and size of a crucial stellar region called the convection zone. The zone extends from near the sun’s surface inward approximately 125,000 miles. The zone is where the gas undergoes a rolling, convective motion much like the unstable air in a thunderstorm.

“This turbulent gas has an extremely important job, because nearly all of the energy emitted at the surface of the sun is transported there by convection,” Drake said.

The accepted amount of neon in the sun has led to a paradox. The predicted location and size of the solar convection zone disagree with those deduced from solar oscillations. Solar oscillations is a technique astronomers previously relied on to probe the sun’s interior. Several scientists have noted the problem could be fixed if the abundance of neon is in fact about three times larger than currently accepted.

Attempts to measure the precise amount of neon in the sun have been frustrated by a quirk of nature; neon atoms give off no signatures in visible light. However, in a gas heated to millions of degrees, neon shines brightly in X-rays. Stars like the sun are covered in this super-heated gas that is betrayed by the white corona around them during solar eclipses. However, observations of the sun’s corona are very difficult to analyze.

To probe the neon content, Drake and his colleague Paola Testa of the Massachusetts Institute of Technology in Cambridge, Mass., observed 21 sun-like stars within a distance of 400 light years from Earth. These local stars and the sun should contain about the same amount of neon when compared to oxygen.

However, these close stellar kin were found to contain on average almost three times more neon than is believed for the sun. “Either the sun is a freak in its stellar neighborhood, or it contains a lot more neon than we think,” Testa said.

These Chandra results reassured astronomers the detailed physical theory behind the solar model is secure. Scientists use the model of the sun as a basis for understanding the structure and evolution of other stars, as well as many other areas of astrophysics.

“If the higher neon abundance measured by Drake and Testa is right, then it is a simultaneous triumph for Chandra and for the theory of how stars shine,” said John Bahcall of the Institute for Advanced Study, Princeton, N.J. Bahcall is an expert in the field who was not involved in the Chandra study. Drake is lead author of the study published in this week’s issue of the journal Nature.

NASA’s Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency’s Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.

Original Source: Chandra News Release

Shuttle Mission is Safe So Far

Space Shuttle Discovery lifts off Launch Pad. Image credit: NASA/KSC Click to enlarge
NASA’s Space Shuttle Return to Flight mission (STS-114) is under way. Space Shuttle Discovery lifted off Tuesday from NASA’s Kennedy Space Center, Fla., at 10:39 a.m. EDT.
“We know the folks on planet Earth are just feeling great right now,” said Discovery’s commander Eileen Collins from orbit.

During their 12-day mission to the International Space Station, Collins and her six fellow astronauts will test new techniques and equipment designed to make Shuttles safer. They’ll also deliver supplies and make repairs to the Space Station after Discovery docks on Thursday.

“I want you to think about what it takes to get millions of different parts from thousands of vendors across the country to work together to produce what you saw here today and to realize how chancy it is, how difficult it is, at what a primitive state of technology it still is,” said NASA Administrator Michael Griffin. “This team managed to do it, and I think a large debt of appreciation is due to them. They have worked as hard as any team in NASA history.”

Discovery’s first launch attempt July 13 was postponed because of problems related to a liquid hydrogen low-level fuel sensor inside the external fuel tank. Hundreds of engineers across the country worked to analyze and understand the issue. The sensor system was repeatedly tested during today’s launch countdown, and it performed without a problem.

The STS-114 Return to Flight mission is the first step in realizing America’s Vision for Space Exploration, which calls for a stepping-stone strategy of human and robotic missions to achieve new exploration goals. The Shuttle will be used to complete assembly of the International Space Station. The Station remains a vital research platform for human endurance in space, a test bed for technologies and techniques that will enable the longer journeys to the moon, Mars and beyond.

For the latest information about the STS-114 mission on the Web, visit:
http://www.nasa.gov/returntoflight

Original Source: NASA News Release

Astronomy Camp Adventures

A view of the observatories atop Mount Lemmon’s summit. Image credit: Yvette Cendes. Click to enlarge.
Welcome to the world of astronomy camp. Every year, the University of Arizona astronomy camps host teenagers, adults, and educators from around the world. Taking place on Mount Lemmon, a mountain with numerous astronomical instruments near Tucson, Arizona, the camps allow the participants to become ?guest astronomers? from being housed in the professional astronomers? dormitories to learning how to use the various computer programs. The campers even get to do their own research using telescopes and instruments that would turn most professionals green with envy: a 12? equipped with a CCD camera, a 40? with a photometer, a 60? with an imager, and even a 61? with a spectrometer on nearby Mount Bigelow.

This year, the 2005 Advanced Teen Camp took place for nine days in late June and early July. The campers were diverse: 28 campers evenly divided between male and female, ranging from age 14 to age 18, from sixteen states and one foreign country. Each camper had to write an essay and have a letter of recommendation to be accepted, and all the campers arrived in Tucson excited but nervous about what to expect. ?We want this to be the best week of your life,? said Dr. Don McCarthy, a Steward Observatory astronomer and director of astronomy camp. By the last day, most campers agreed that it had been just that.

Before astronomy camp began, the campers were encouraged to begin brainstorming project ideas for research they would like to conduct during the week. The campers then had two days to refine ideas before they were written as proposals and submitted to the camp?s Telescope Allocation Committee (TAC), which then figured out an observing schedule on each telescope for the remainder of the week. After all the data had been collected and analyzed, the camp culminated on the last day with a miniature conference where each group presented their findings.

The projects that were carried out during astronomy camp varied in incredible amounts and showed just what the campers were interested in from imaging galaxies to finding the properties of planetary nebulae. One group was on the 61? every night taking data from quasars, which yielded things such as the distance and velocity of each object after careful calculation. Another group, which became all too painfully aware that astronomy is filled with problems, went through three different types of instrumentation before finally getting usable data on an asteroid?s light curve.

The campers even made observations that contributed to cutting edge astronomical research. Armed with the imaging capabilities of the 60? and the help of the Catalina Sky Survey, the campers tracked the movements for several Kuiper Belt Objects (KBOs) and conducted a search for Near Earth Objects (NEOs). The KBO group was successful in tracking the KBOs and even recovered a previously lost object. The NEO group topped even that: after ?blinking? several hundred images taken of the same parts of the sky at various times the group not only recovered several lost NEOs but discovered a completely new one themselves! The newly discovered asteroid, 2005 MG5, was discovered on the nearest point of its orbit to Earth, and was followed up on by several other observatories around the world. Not bad for a few teenagers still in high school!

When not observing or sleeping off the effects of staying up all night (to the excitement of any teenager, the campers did not have to wake before noon) the days were filled with lectures on various astronomical topics from the camp counselors on everything from the properties of reflecting telescopes to the Deep Impact mission. There was also time to observe our nearest star, the Sun, through numerous safe ways including pinhole projection and through a hydrogen alpha filter. The days were rounded off with other interesting activities, such as watching astronomy-related Simpsons episodes and numerous chess duels.

In the middle of camp, there was a break from the usual schedule for an overnight trip to Mount Graham International Observatory, which houses the Large Binocular Telescope (LBT), the Sub-Millimeter Telescope (SMT), and the Vatican Observatory (jokingly referred to as the ?pope scope?). This caused great excitement among the campers for good reason: the LBT will become the largest telescope in the world upon completion with its twin 8.4m mirrors, the first of which saw first light in 2004. Not only did the campers sleep in the telescope building, they got to see the building open up at sunset! To top it off, the campers had the opportunity to use the SMT telescope, observing various objects throughout the night in radio wavelengths not available on Mount Lemmon.

Before the campers knew it, it was the last day of camp and graduation was being held in downtown Tucson in the additional company of camper relatives. While handing out the certificates, however, the campers were roasted a little by the counselors, who singled out campers for everything from ?The Falsetto Award? to ?Greatest Fruit Lover? and ?Best Impersonation of Spock.? After numerous hugs all around and sorrowful goodbyes, the campers left for homes scattered around the globe. Would there be another reunion sometime in the future? It is likely: down the line most campers end up in the most top-notch universities, and many continue on in similar engineering and science fields. Not surprisingly, many even go on to become the next generation of astronomers, citing their week in Arizona as the primary inspiration in their decision.

What does the future hold for astronomy camp? It appears the program will soon be expanding: numerous plans are in the works for Mount Lemmon, including a brand-new 2.4 meter telescope exclusively for camp use. In the world of astronomy camp, the sky is truly the limit.

Visit the Astronomy Camp website

Written by Yvette Cendes

Book Review: Einstein’s Miraculous Year

Einstein and his works need little explanation. Suffice it to say that he almost jumped out of nowhere to stand tall in the field of physics. His five papers of 1905, by themselves, could stand together on their own as a worthwhile publication. In them, Einstein apparently argues what some consider two sides of the same coin. On side has things composed of particles. Therefore, Newtonian mechanics can provide great insight. On the other side, fields, especially magnetic and electric, cause an effect over distance without the support of a median. Altogether, the papers in the book include; his dissertation on the determination of molecular dimensions, molecular-kinetic theory of heat (Brownian motion), the electrodynamics of moving bodies, the inertia of a body depending on its energy content, and the production and transformation of light.

The forward by Roger Penrose highlights the different thought processes necessary for Einstein to consider both particle and field effects. And herein is the true benefit of this book. Both Penrose and Stachel emphasize the scope, significance and importance of Einstein’s contributions in light of the status of knowledge of physics at that time. The names of other people doing investigations, as well as the state of their progress, provides powerful insight into Einstein’s originality and capability. For example, Penrose draws upon the history of luminaries like Galileo, Newton, Maxwell, and Bohr for his depiction of the significance of Einstein’s amazing insight and prescience,

In addition to this forward, John Stachel provides a brief biography of Einstein. He mostly bases this on written records with the intent of portraying Einstein’s thought process and his method of achieving his advances. Also, to address some controversy, he adds a section discounting the contributions of Einstein’s wife, Mileva Maric. To instill a feeling of authenticity, Stachel includes many references either directly from source (Einstein’s personal letters) or from people who had first hand interactions with Einstein himself.

Don’t forget that Einstein was German. Hence, all his papers needed translation and they were freshly redone for this publication. The translator’s goal was ‘to render Einstein’s scientific writings accurately into modern English but to retain the engaging and clear prose style of the originals’. Accompanying the papers are ‘the historical essays and notes that deal with his contributions to relativity theory, quantum mechanics and statistical mechanics’. The translator seems to have done a superb job, as the papers are simple and easy to read, with little evidence of having been originally authored in another language.

This ease in reading may be surprising given the aura that surrounds Einstein. But don’t let this discourage you. The book mostly uses qualitative imagery with equations only copied directly from Einstein’s papers. Einstein himself gives a thorough and readily comprehensible explanation, as demonstrated by his frequent use of mental imagery to solve and depict problems. This is likely the true source of the ease. There is no need for the reader to have a strong background in physics to understand the concepts. The math is neither overwhelming nor extensive and does not pose an impediment to comprehension. As well, given Einstein’s aura, it is interesting to note the number of errors in the original papers as clarified by the endnotes.

In all, this is a great compilation. The shear scope of the papers themselves is truly captivating. Their implications given the state of the art at the times and even today is quite astounding. The bravery and nervousness of Einstein the person comes out quite clearly. This book succinctly captures one amazing step for humankind, the challenges of the physical sciences and the onward march of our comprehension. The reader can’t help but be left in awe with the realization that all the contents were completed by one of our human race and all within the time frame of one year.

The name of Einstein brings to most everyone’s mind, the image of a stellar individual who almost singled handedly made significant advances in physics. A hundred years later, we can appreciate his contributions even more. For those seeking to grasp some more of the man and a lot more of the science, read John Stachel’s book, Einstein’s Miraculous Year. Read it to grasp the credence of the ability of our species and the contributions that we continually make to our comprehension of the universe within which we live.

Click here to visit Amazon.com and read more reviews online or purchase a copy.

Review by Mark Mortimer

On Saturn’s Darkside

Saturn’s splendid rings made visible by sunlight. Image credit: NASA/JPL/SSI. Click to enlarge
This view shows the unlit side of Saturn’s splendid rings made visible by sunlight filtering through the rings from the lit side. Light from the illuminated side of the rings brightens the night side of the planet’s southern hemisphere with “ringshine” (seen here at lower right). The feeble glow from transmitted light dimly illuminates the planet’s northern half.
Saturn’s shadow stretches across the rings toward lower left.

The image was taken in visible light with the Cassini spacecraft wide-angle camera on June 8, 2005, at a distance of approximately 477,000 kilometers (296,000 miles) from Saturn. The image scale is 25 kilometers (15 miles) per pixel.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA’s Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging team is based at the Space Science Institute, Boulder, Colo.

For more information about the Cassini-Huygens mission visit http://saturn.jpl.nasa.gov . The Cassini imaging team homepage is at http://ciclops.org .

Original Source: NASA/JPL/SSI News Release

Space Telescope Could Unfold in Space

Collimation testbed of the Dobson telescope. Image credit: Tom Segert. Click to enlarge
A novel suitcase-sized telescope could revolutionise the way we see the Earth and other planets. ESA has supported the work of a group of students in developing the Dobson Space Telescope, being tested this month aboard ESA’s parabolic flight campaign aircraft.

This experimental prototype launches in a compact configuration and then unfolds to provide a cost-effective space telescope. It could lead to fleets of low-cost telescopes, bigger than the Hubble Space Telescope.
Large payloads are difficult to put into space because they are usually heavy and expensive to launch. Now a revolutionary design of unfolding telescope, inspired by telescopes used by amateur astronomers, is ready to enter a phase of detailed testing. If successful, it could dramatically reduce the cost of placing telescopes in space.

The telescope is a project of the Department of Astronautics at the Technische Universit?t Berlin, Germany. “We called our project the Dobson Space Telescope because we borrowed the idea from the Dobsonian telescopes used by amateur astronomers,” says project manager Tom Segert, who has recently completed his degree at TU Berlin. Dobsonian telescopes are often comprised of two mirrors, held the correct distance apart by long poles. They can be dismantled and transported by car to a good observing site, where there are reassembled with nothing more complicated than a screwdriver.

In space, however, a screwdriver is useless unless you have an astronaut to turn it and so Segert plans to use a motor to unfold his telescope. Working on a shoestring budget, his first prototype used inflatable bicycle tyres to push the mirrors into position. When this proved incapable of aligning the telescope optics, Segert turned to metal truss rods and micromechanics to unfold everything into its correct place.

Using a grant from ESA’s General Studies Programme, Segert and other TU Berlin students have written a full technical report and built a prototype for testing in this month aboard ESA’s parabolic flight campaign aircraft. As the aircraft flies special manoeuvres, the prototype will experience periods of free-fall that mimic the conditions in space. During this time, Segert will test the telescope?s ability to unfold. Eventually, Segert hopes for a demonstration mission in space.

Currently, space-based observations account for just one tenth of the commercial Earth observation market. The rest is supplied by aeroplane reconnaissance, which is much cheaper. Space observations cost 20 Euros per kilometre whereas aeroplane data is twenty times cheaper. Segert believes that cost-effective Earth observation microsatellites, based on his telescope design, will allow all users access to space images.

There is also nothing to stop a Dobson Space Telescope from turning its attention from Earth to the wider cosmos. In fact, Segert imagines the first missions could ‘timeshare’ between Earth and astronomical observation. “When the telescope flies into the shadow of the Earth and so can’t take pictures of the ground, we could turn it around and observe astronomical targets,” he says.

Future versions could be sent to other planets. As the telescope is so lightweight, it could be mounted on a Mars Express-sized spacecraft and used to take pictures showing details as small as 30 cm across on the Martian surface.

Although the prototype contains a respectable 50 cm-diameter mirror, Segert believes that it can scaled up in the future to achieve space telescopes bigger than the Hubble Space Telescope but still at a fraction of the cost. “If we did that,” says Segert, “the astronomers would be in heaven.”

Original Source: ESA Portal

What’s Making Martian Methane?

Frosted southern plains in early spring. Image credit: MSSS/JPL/ NASA Click to enlarge
The detections of methane in the martian atmosphere have challenged scientists to find a source for the gas, which is usually associated with life on Earth. One source that can be ruled out is ancient history: Methane can survive only 600 years in the martian atmosphere before sunlight will destroy it.

If the global concentration of methane on Mars is 10 ppb, then an average of 4 grams of methane is being destroyed every second by sunlight. That means about 126 metric tons of methane must be produced each year to ensure a steady concentration of 10 ppb.

There is an outside chance that the methane is being delivered to Mars by comets, asteroids, or other debris from space. Calculations show that micrometeorites are likely to deliver only 1 kilogram of methane a year — far short of the 126-ton replacement level. Comets could deliver a huge slug of methane, but the interval between major comet impacts averages 62 million years, so it’s unlikely that any comet delivered methane within the past 600 years.

If we can rule out methane delivery, then the methane must be manufactured on Mars. But is the source biology, or processes unassociated with life?

A small percentage of Earth’s methane is made through non-biological (“abiogenic”) interactions between carbon dioxide, hot water and certain rocks. Could this be occurring on Mars? Perhaps, says James Lyons of the Institute for Geophysics and Planetary Physics at UCLA.

These reactions require only rock, water, carbon and heat, but on Mars, where would the heat come from? The planet’s surface is stone cold, averaging minus 63 degrees C. Volcanoes could be a source of heat. Geologists think the most recent eruption on Mars was at least 1 million years ago — recent enough to suggest that Mars is still active, and therefore hot deep below the surface.

A trickle of methane averaging 4 grams per second could come from such a geological hot spot. But any martian hot spot must be deep and well-insulated from the surface, since the Thermal Emission Imaging System on Mars Odyssey found no locations that are at least 15 degrees C warmer than the surroundings. However, Lyons thinks it’s still possible that a deep body of magma could be supplying the heat.

In one computer model of simplified martian geology, a cooling body of magma 10 kilometers deep, 1 kilometer wide, and 10 kilometers long created the 375 to 450 degrees C temperature that drives abiogenic methane generation at mid-ocean ridges on Earth. Such a body of hot rock, Lyons says, “is perfectly sensible, there’s nothing strange about it,” because Mars probably retains some heat from planetary formation, much like Earth.

“It encourages us to think that this is a plausible scenario for explaining methane on Mars, and we would not see the signature of that dike (body of hot rock) on the surface,” says Lyons. “That’s the angle we are pursuing; it’s the simplest, most direct explanation for the methane detected.”

Although no one can rule out abiogenic sources for the methane on Mars, when you find methane on Earth, you are usually seeing the work of methanogens, ancient anaerobic microbes that process carbon and hydrogen into methane. Could methanogens live on Mars?

To find out, Timothy Kral, associate professor of biological sciences at the University of Arkansas, began growing five types of methanogens 12 years ago in volcanic soil chosen to simulate martian soil. He’s now shown that methanogens can survive for years on the granular, low-nutrient soil, although when grown in Mars-like conditions, at just 2 percent of Earth’s atmospheric pressure, they become desiccated and go dormant after a couple of weeks.

“The soil tends to dry out, and we have been able to find viable cells; they are still alive, but they don’t produce methane anymore,” Kral says.

Methanogens need a steady source of carbon dioxide and hydrogen. While carbon dioxide is abundant on Mars, “hydrogen is a question mark,” Kral says.

Vladimir Krasnopolsky, a research professor at Catholic University of America in Washington D.C., detected 15 parts per million of molecular hydrogen in the atmosphere of Mars. It is possible that this hydrogen is escaping from a deep source in the martian interior which methanogens could use.

If methanogens are deep inside Mars, the methane gas they produce would slowly rise toward the surface. Eventually it could reach a pressure-temperature condition where it would get trapped in ice crystals, forming methane hydrate.

“If there were a subsurface biosphere, methane hydrate would be an inevitable consequence, if things behave as they do on Earth,” says Stephen Clifford of the Lunar and Planetary Institute in Houston, Texas.

And there’s a fringe benefit, Clifford adds. Methane hydrates, “would be an insulating blanket that would substantially reduce the thickness of frozen ground on Mars, from several kilometers at the equator, to maybe less than a kilometer.” In other words, methane hydrate would both store evidence of life and insulate any life that remained from the ultra-cold surface temperatures.

Although data on conditions a kilometer or so below the martian surface are non-existent, the growing picture of the complexity, size and adaptability of Earth’s underground biosphere certainly improves the chance that life exists in comparable conditions inside Mars. Earth’s underground biosphere is composed largely of microbes, some of which live at depths, pressures and chemical conditions once thought inhospitable to life.

Deep inside Mars may be a hardscrabble place to make a living, but methanogens are no wimps, Kral says. “They are tough, durable. The fact that they have been around probably since the beginning of life on Earth, and continue to be the predominant life form below the surface and deep in the oceans, means they are survivors, they are doing extremely well.”

Original Source: NASA Astrobiology

Can You Make a Better Glove?

An astronaut’s pair of gloves. Image credit: NASA. Click to enlarge
NASA, in collaboration with the Volanz Aerospace Inc./Spaceflight America (Volanz), today announced a new Centennial Challenges prize competition.

The Astronaut Glove Challenge award will go to the team that can design and manufacture the best performing glove within competition parameters. The $250,000 purse will be awarded at a competition scheduled for November 2006, when competing teams test their glove designs against each other.

For the Challenge, teams must develop the bladder-restraint portion of an astronaut glove that is strong, easy on the hands, and gives the operator a high degree of dexterity.

“Reducing space suit glove fatigue is a critical technological goal that, if successful, would have an important impact on astronaut performance and mission planning,” said NASA’s acting Associate Administrator for the Exploration Systems Mission Directorate, Douglas Cooke.

Each team will provide two gloves for three key tests. First, the forces required to move the fingers and thumb on each glove will be measured. Gloves requiring the least force will be awarded more points. Second, each team will perform standardized dexterity tasks in a depressurized glove box. Teams completing the most tasks within a specified time will win the most points. Third, one glove from each team will be subjected to a burst test. Glove designs that withstand greater internal pressures will be awarded more points.

The team with the glove design that wins the most points, while exceeding the performance of existing astronaut glove technologies will win the contest.

NASA’s Centennial Challenges promotes technical innovation through a novel program of prize competitions. It is designed to tap the nation’s ingenuity to make revolutionary advances to support the Vision for Space Exploration and NASA goals.

“With this competition, we are continuing to develop Centennial Challenges’ base of smaller, targeted technology prizes and laying the ground work for our larger competitions,” said NASA’s Centennial Challenges program manager Brant Sponberg.

The Astronaut Glove Challenge will be administered and executed by Volanz at no cost to NASA. Volanz will officially kick-off the challenge at a conference in November in Houston.

“New technologies and innovations will have to be developed quickly to improve the wearability and dexterity of astronaut gloves. This challenge will help NASA meet this key requirement in support of the Vision for Space Exploration,” said Volanz chairman and chief executive officer, Alan Hayes. “Like other Centennial Challenges’ competitions, the Astronaut Glove Challenge will encourage innovation that will greatly enhance our capabilities in this area,” he added.

The Centennial Challenges program is managed by NASA’s Exploration Systems Mission Directorate. Volanz is a non-profit Maryland corporation formed in 1998 to provide space science educational and research programs for researchers, educators, and students.

For more information about Centennial Challenges on the Internet, visit:
http://centennialchallenges.nasa.gov

For more information about NASA and agency programs on the Internet, visit:
http://www.nasa.gov/home/index.html

For information about Volanz Aerospace Inc. on the Internet, visit:
www.spaceflightamerica.org

Original Source: NASA News Release