Making the Mirror for the World’s Largest Telescope

Workers completing the mold of the 8.4 metre mirror for the Giant Magellan Telescope mirror. Image credit: Lori Stiles/UA. Click to enlarge.
The University of Arizona’s Steward Observatory Mirror Lab is pre-firing its huge spinning furnace and inspecting tons of glass for casting a first 8.4-meter (27-foot) diameter mirror for the Giant Magellan Telescope (GMT). The casting is scheduled for Saturday, July 23.

With this milestone step, the GMT becomes the first extremely large ground-based telescope to start construction.

The completed GMT telescope primary mirror will consist of six 8.4-meter off-axis mirrors surrounding a seventh, on-axis central mirror. (An off-axis mirror focuses light at an angle away from its axis, unlike a symmetrical mirror that focuses light along its axis.) This arrangement will give the GMT four-and-one-half times the collecting area of any current optical telescope and the resolving power of a 25.6-meter (84-foot) diameter telescope, or 10 times the resolution of the Hubble Space Telescope.

‘Spin-casting’ single-piece telescope mirrors that are giant, stiff yet lightweight is an ingenious, awesome process that was conceived and developed by University of Arizona Regents’ Professor of astronomy J. Roger P. Angel. Casting giant monolithic mirrors is accomplished at only one place in the world — the Steward Observatory Mirror Laboratory.

The casting team, headed by Randy Lutz, installed about 50 cores a day for a total 1,681 cores during seven weeks in April – May. The team bolted each core at precisely measured angles to hearth tile and adjoining cores in this operation. The crew daubed all the glued junctures with blue “smurf” – a concoction the color of the blue smurf cartoon characters — to prevent glass from sticking to the mold.

At this point, the mold holds 17,000 pounds of hearth tiles, 16,000 pounds in fiber tub walls, and 15,000 pounds of cores and pins. The casting team has now cleaned and inspected the completed mold, lowered the furnace cover into place, and begun pre-firing on June 16.

Team members actively ‘pilot’ the furnace by computer as temperatures ramp up during the first 8 days of the heating process, then shut power off to complete the two-week pre-firing. Pre-firing centers core glue joints, burns out any impurities and stresses the mold. The casting team will inspect the mold for any needed repairs after pre-firing.

Some of the most visually stunning steps in casting are glass inspection and loading. The team began inspecting 90 shipping crates of glass on June 24. Glass loading is scheduled for the second week of July, said Steve Miller, Mirror Lab manager.

The 40,000 pounds of borosilicate glass that will make the 27-foot diameter (8.4 meter) GMT mirror comes from Ohara Glassworks in Japan. Ohara made the glass from sand that comes from the gulf coast of Florida.

The Mirror Lab will start heating the furnace July 18. It takes six days for the glass to reach peak temperature at 2,150 degrees Fahrenheit (1178 Celsius). At this temperature, the glass begins to flow like honey at room temperature. The thick liquid glass flows between the hexagonal cores in the mold to create a “honeycomb” structure. The final honeycomb mirror blank will weigh about a fifth as much as a solid glass mirror of its size.

The bearings on the rotating furnace will turn a 100-ton load during spincasting. The furnace can be supplied with up to 1.1 Megawatts of electricity during casting — enough to power an average 750 to 1,100 Tucson households, depending on the time of year.

The oven’s rotation rate determines the depth of the curve spun into the shape of the mirror, or the mirror’s focal length. The GMT mirror will spin 5 times a minute, slower than the two 8.4-meter mirrors the Lab made for the Large Binocular Telescope (LBT), because the off-axis GMT mirror is to be a shallower, longer focal-length mirror than the symmetric LBT primaries.

“This is a new epoch for astronomy,” Richard Meserve, president of the Carnegie Institution, said. “The fabrication of the off-axis mirror is a path-breaking event that will advance scientific discovery. Everyone in the eight-member GMT consortium is excited that we’re in production.”

The Giant Magellan Telescope consortium currently includes the Carnegie Observatories, Harvard University, Smithsonian Astrophysical Observatory, University of Arizona, University of Michigan, Massachusetts Institute of Technology, University of Texas at Austin, and Texas A & M University.

“The fact that we are already in production is directly related to the successful technology developed for the twin 6.5-meter (21-foot) Magellan telescopes at Carnegie’s Las Campanas Observatory in Chile,” said Matt Johns, assistant director of the Carnegie Observatories and GMT project manager. “The Magellan telescopes have proved to be the best natural imaging telescopes on the ground.”

Mirror cooling is a carefully controlled process that will take 11 to 12 weeks. After the mirror is completely cooled, the lab will wash the ceramic cores out of the mirror’s glass honeycomb cells. Then the mirror will be ground and polished to an accuracy of plus-or-minus 15 to 20 nanometers (a nanometer is a billionth of a meter). The mirror will be coated with a layer of reflective aluminum only 100 nanometers thick at the observatory site.

The GMT is slated for completion in 2016 at a site in northern Chile. With its powerful resolution and enormous collecting area, it will be able to probe the most important questions in astronomy, including the birth of stars and planetary systems in our Milky Way, the mysteries of black holes, and the genesis of galaxies.

Detailed information about the GMT design and science goals is online at http://www.gmto.org/

Original Source: UA News Release

Satellite View of Istanbul

Radar satellite view of Istanbul. Image credit: ESA. Click to enlarge.
The city of Istanbul, located astride the eastern edge of Europe and western edge of the Asian continent, shown in an Envisat radar multi-temporal composite image.

What is today Europe’s third largest urban centre has been a major city for the last two thousand years. It has known three different names in that time: Byzantium when it was the gateway to Greek settlements on the Black Sea, Constantinople when it became the capital of the Eastern Roman Empire, then Istanbul when it fell to Muslim invaders in 1453.

In 1919 Istanbul lost its position as capital of Turkey, but remains that country’s leading economic centre. Its population has grown from 2.84 million in 1970 to around ten million today, with settlers flocking from rural areas of Anatolia. Around 30% of all the cars owned in Turkey are in Istanbul.

Urban areas show up as white in this image ? the brightest areas being the most densely built-up. Among the densest is the old town, located on the west side of the city on the Emin?nu Peninsula, below the river estuary known as the Golden Horn. Further west along the coast are the runways of Ataturk International Airport.

Istanbul owes its prosperity to its status as a link between the Balkans, the Middle East and Central Asia, and to the high level of shipping that travels through the narrow Bosporus (Bosphorus) channel dividing Europe and Asia.

Some 48 000 ships pass through the Bosporus annually, three times denser than the Suez Canal traffic and four times as dense as the Panama Canal. Around 55 million tonnes of oil are shipped through here each year. Look closely along the Bosporus and bright points from individual ships can be seen. Also visible are the two bridges connecting the two continents, crossed by at least 45 000 vehicles daily.

Note the chain of islands known as the Princes’ Islands (Kizil Islands) off the east side of Istanbul. The city faces onto the inland Sea of Marmara (Marmara Denizi), which has an area of around 11 350 square kilometres. The Bosporus links the Sea to the Black Sea. Note also Lake Iznik (Iznik Golu) towards the south-east corner of the image.

Because radar images measure surface texture rather than reflected light, there is no colour in a standard radar image.

Instead the colour in this image is due to it being a multitemporal composite, made up of three Advanced Synthetic Aperture Radar (ASAR) images acquired on different dates, with separate colours assigned to each acquisition to highlight differences between them: Red for 31 July 2003, Green for 17 April 2003 and blue for 26 February 2004.

The view was acquired in ASAR Image Mode Precision, with pixel sampling of 12.5 metres.

Original Source: ESA News Release

Cebreros is Ready and Listening

The European Space Agency’s Cebreros radio telescope in Spain. Image credit: ESA. Click to enlarge.
On 9 June, a powerful new 35-metre antenna, presently undergoing acceptance testing at Cebreros, Spain, successfully picked up signals and tracked Rosetta and SMART-1. It is ESA’s second deep-space ground station in its class and adds Ka-band reception capability and high pointing precision to the ESTRACK network.

Construction of the new ground station, located in the Spanish province of Avila, has proceeded in record time. Procurement activities started in February 2003, and in spring 2004, on-site work was initiated.

After successful assembly of the antenna structure in November 2004 and the acceptance testing of radio-frequency components, the system is now entering final on-site testing. All portions of the antenna’s infrastructure, including power systems, buildings and communications, are already complete and are ready to hand over for operations.

Tuned in to signals from distant space
Successful reception of signals from the two spacecraft demonstrates that the antenna is working well. Rosetta, Europe’s comet-chaser, is presently 46 million km from Earth while SMART-1 is orbiting the Moon.

Cebreros will be capable of receiving signals in the X and Ka bands. The X band (7-8 GHz) is used for routine telecommanding and to transmit high-volume data to Earth; the Ka band (32 GHz) offers enhanced data reception rates and will be used for future missions.

Additional measurements using radio-emitting stars gave good first results with respect to pointing accuracy and antenna performance, indicating that the station’s specifications will be met.

Full operational readiness of the antenna is anticipated for 30 September 2005, and Cebreros is subsequently scheduled to swing into operation to support the Venus Express mission, scheduled for launch on 26 October 2005.

With Cebreros, Spain, and New Norcia, Australia, ESA spacecraft operations will benefit from two 35-metre deep-space antennas. Future plans foresee the possible construction of a third 35-metre station at an American longitude to become ready by the end of 2009.

ESTRACK family grows
Cebreros is the latest station to join ESTRACK, ESA’s worldwide network of ground stations operated from the agency’s Space Operations Centre (ESOC) in Darmstadt, Germany. Ground stations are used for sending commands to spacecraft and receiving data from onboard instruments.

With Cebreros, there are 8 stations in ESTRACK, located in Europe, Africa, South America and Australia. Additional stations in Kenya, Chile and Norway are available when needed. The system is highly automated and most stations run with little or no manned intervention for routine operations, providing a significant cost benefit.

Original Source: ESA News Release

Planets Under Construction

Artist illustratino of a planetary zone filled with pebbles. Image credit: CfA. Click to enlarge.
Interstellar travelers might want to detour around the star system TW Hydrae to avoid a messy planetary construction site. Astronomer David Wilner of the Harvard-Smithsonian Center for Astrophysics (CfA) and his colleagues have discovered that the gaseous protoplanetary disk surrounding TW Hydrae holds vast swaths of pebbles extending outward for at least 1 billion miles. These rocky chunks should continue to grow in size as they collide and stick together until they eventually form planets.

“We’re seeing planet building happening right before our eyes,” said Wilner. “The foundation has been laid and now the building materials are coming together to make a new solar system.”

Wilner used the National Science Foundation’s Very Large Array to measure radio emissions from TW Hydrae. He detected radiation from a cold, extended dust disk suffused with centimeter-sized pebbles. Such pebbles are a prerequisite for planet formation, created as dust collects together into larger and larger clumps. Over millions of years, those clumps grow into planets.

“We’re seeing an important step on the path from interstellar dust particles to planets,” said Mark Claussen (NRAO), a co-author on the paper announcing the discovery. “No one has seen this before.”

A dusty disk like that in TW Hydrae tends to emit radio waves with wavelengths similar to the size of the particles in the disk. Other effects can mask this, however. In TW Hydrae, the astronomers explained, both the relatively close distance of the system and the stage of the young star’s evolution are just right to allow the relationship of particle size and wavelength to prevail. The scientists observed the young star’s disk with the VLA at several centimeter-range wavelengths. “The strong emission at wavelengths of a few centimeters is convincing evidence that particles of about the same size are present,” Claussen said.

Not only does TW Hydrae show evidence of ongoing planet formation, it also shows signs that at least one giant planet may have formed already. Wilner’s colleague, Nuria Calvet (CfA), has created a computer simulation of the disk around TW Hydrae using previously published infrared observations. She showed that a gap extends from the star out to a distance of about 400 million miles – similar to the distance to the asteroid belt in our solar system. The gap likely formed when a giant planet sucked up all the nearby material, leaving a hole in the middle of the disk.

Located about 180 light-years away in the constellation Hydra the Water Snake, TW Hydrae consists of a 10 million-year-old star about four-fifths as massive as the Sun. The protoplanetary disk surrounding TW Hydrae contains about one-tenth as much material as the Sun – more than enough to form one or more Jupiter-sized worlds.

“TW Hydrae is unique,” said Wilner. “It’s nearby, and it’s just the right age to be forming planets. We’ll be studying it for decades to come.”

This research was published in the June 20, 2005, issue of The Astrophysical Journal Letters.

Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

Original Source: Harvard CfA News Release

Pan’s Influence on the Rings

Saturn’s moon Pan makes ripples in the rings as it orbits the planet. Image credit: NASA/JPL/SSI. Click to enlarge.
Saturn’s moon Pan is seen here orbiting within the Encke Gap in Saturn’s A ring in two differently processed versions of the same Cassini image. The little moon is responsible for clearing and maintaining this gap, named for Johann Franz Encke, who discovered it in 1837. Pan is 20 kilometers (12 miles) across.

The top image reveals two of the faint, dusty ringlets that occupy the gap along with Pan. One of the ringlets occupies nearly the same orbit as Pan, while the other is closer to the gap’s inner edge. Not only do the ringlets vary in brightness, but they also appear to move in and out along their length, resulting in notable “kinks,” which are similar in appearance to those observed in the F ring (see PIA06585). One possible explanation for the complex structure of the ringlets is that Pan may not be the only moonlet in this gap.

Pan is responsible for creating stripes, called ‘wakes,’ in the ring material on either side of it. Since ring particles closer to Saturn than Pan move faster in their orbits, these particles pass the moon and receive a gravitational “kick” from Pan as they do. This kick causes waves to develop in the gap where the particles have recently interacted with Pan (see PIA06099), and also throughout the ring, extending hundreds of kilometers into the rings. These waves intersect downstream to create the wakes, places where ring material has bunched up in an orderly manner thanks to Pan’s gravitational kick.

In the bottom image, the bright stripes or wakes moving diagonally away from the gap’s edges can be easily seen. The particles near the inner gap edge have most recently interacted with Pan and have just passed the moon. Because of this, the disturbances caused by Pan on the inner gap edge are ahead of the moon. The reverse is true at the outer edge: the particles have just been overtaken by Pan, leaving the wakes behind it.

This image was taken in visible light with the Cassini spacecraft narrow-angle camera on May 18, 2005, at a distance of approximately 1.6 million kilometers (1 million miles) from Pan and at a Sun-Pan-spacecraft, or phase, angle of 44 degrees. The image scale is 9 kilometers (6 miles) per pixel.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA’s Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging team is based at the Space Science Institute, Boulder, Colo.

For more information about the Cassini-Huygens mission visit http://saturn.jpl.nasa.gov. For additional images visit the Cassini imaging team homepage http://ciclops.org.

Original Source: NASA/JPL/SSI News Release

Bumpy Dust Makes Molecular Hydrogen

Simulation of interstellar grains of dust. Image credit: OSU. Click to enlarge.
Science fiction writer Harlan Ellison once said that the most common elements in the universe are hydrogen and stupidity.

While the verdict is still out on the volume of stupidity, scientists have long known that hydrogen is indeed by far the most abundant element in the universe. When they peer through their telescopes, they see hydrogen in the vast clouds of dust and gas between stars ?- especially in the denser regions that are collapsing to form new stars and planets.

But one mystery has remained: why is much of that hydrogen in molecular form ?- with two hydrogen atoms bonded together ?- rather than its single atomic form? Where did all that molecular hydrogen come from? Ohio State University researchers recently decided to try to figure it out.

They discovered that one seemingly tiny detail — whether the surfaces of interstellar dust grains are smooth or bumpy — could explain why there is so much molecular hydrogen in the universe. They reported their results at the 60th International Symposium on Molecular Spectroscopy, held at Ohio State University .

Hydrogen is the simplest atomic element known; it consists of just one proton and one electron. Scientists have always taken for granted the existence of molecular hydrogen when forming theories about where all the larger and more elaborate molecules in the universe came from. But nobody could explain how so many hydrogen atoms were able to form molecules — until now.
When it comes to making molecular hydrogen, the ideal microscopic host surface is ?less like the flatness of Ohio and more like a Manhattan skyline.?

For two hydrogen atoms to have enough energy to bond in the cold reaches of space, they first have to meet on a surface, explained Eric Herbst, Distinguished University Professor of physics at Ohio State.

Though scientists suspected that space dust provided the necessary surface for such chemical reactions, laboratory simulations of the process never worked. At least, they didn’t work well enough to explain the full abundance of molecular hydrogen that scientists see in space.

Herbst, professor of physics, chemistry, and astronomy, joined with Herma Cuppen, a postdoctoral researcher, and Qiang Chang, a doctoral student, both in physics, to simulate different dust surfaces on a computer. They then modeled the motion of two hydrogen atoms tumbling along the different surfaces until they found one another to form a molecule.

Given the amount of dust that scientists think is floating in space, the Ohio State researchers were able to simulate the creation of the right amount of hydrogen, but only on bumpy surfaces.

When it comes to making molecular hydrogen, the ideal microscopic host surface is ?less like the flatness of Ohio and more like a Manhattan skyline,? Herbst said.

The problem with past simulations, it seems, is that they always assumed a flat surface.

Cuppen understands why. ?When you want to test something, starting with a flat surface is just faster and easier,? she said

She should know. She’s an expert in surface science, yet it still took her months to assemble the bumpy dust model, and she’s still working to refine it. Eventually, other scientists will be able to use the model to simulate other chemical reactions in space.

In the meantime, the Ohio State scientists are collaborating with colleagues at other institutions who are producing and using actual bumpy surfaces that mimic the texture of space dust. Though real space dust particles are as small as grains of sand, these larger, dime-sized surfaces will enable scientists to test whether different textures help molecular hydrogen to form in the lab.

Original Source: OSU News Release

Sea Launch Launches Americas-8 Satellite

Zenit-3SL rocket blasting off with Intelsat Americas-8 satellite. Image credit: Boeing. Click to enlarge.
Sea Launch Company today successfully delivered the Intelsat Americas?-8 (IA-8) communications satellite to geosynchronous transfer orbit. Early data indicate the spacecraft is in excellent condition.

A Zenit-3SL vehicle lifted off at 7:03 am PDT ( 14:03 GMT), from the Odyssey Launch Platform, positioned at 154 degrees West Longitude. All systems performed nominally throughout the flight. The Block DM-SL upper stage inserted the 5,500 kg (12,125 lbs.) satellite to geosynchronous transfer orbit, on its way to a final orbital position of 89 degrees West Longitude. A ground station in Fucino, Italy, acquired the spacecraft?s first signal less than an hour after liftoff, as planned.

This mission is Sea Launch?s fifth launch for Space Systems/Loral (SS/L), the spacecraft?s manufacturer, and the first for Intelsat. The IA-8 satellite is designed to provide expanded coverage over the Americas, the Caribbean, Hawaii and Alaska with voice, video and data transmission and distribution services. SS/L?s 1300 bus carries 28 C-band and 36 Ku-band transponders, as well as 24 Ka-band spot beams and has a total end-of-life power of 16 Kw. IA-8 is the fifth Intelsat satellite in the North American arc and the 28 th satellite in Intelsat?s global fleet.

Following acquisition of the spacecraft?s signal, Jim Maser, president and general manager of Sea Launch, congratulated Space Systems/Loral and Intelsat. ?We are thrilled to welcome Intelsat into our growing family of satisfied customers,? Maser said. ?We look forward to future missions with Intelsat as well as with our long-time colleagues at Space Systems/Loral. The Sea Launch team has successfully met our commitments once again and I want to personally thank them for their unwavering commitment and hard work.?

Sea Launch Company, LLC, headquartered in Long Beach, Calif., and marketed through Boeing Launch Services (www.boeing.com/launch), is the world?s most reliable heavy-lift commercial launch service. This international partnership offers the most direct and cost-effective route to geostationary orbit. With the advantage of a launch site on the Equator, the reliable Zenit-3SL rocket can lift a heavier spacecraft mass or provide longer life on orbit, offering best value plus schedule assurance. For additional information and images of this successfully completed mission, visit the Sea Launch website at: www.sea-launch.com

Original Source: Boeing News Release

June 25th Conjunction: Mercury, Venus and Saturn

Sky map of the June 25th planetary alignment. Image credit: NASA. Click to enlarge.
Saturn, which has been prominent, in the constellation Gemini all winter is slowly exiting our skies. But the Ringed Planet has one last show to put on for us, and the stage has been set. On June 18th, Saturn was joined by Venus, followed by Mercury on the 19th. On these dates the trio formed a long string stretching from the stars Castor and Pollux to just above the horizon. As the week progressed, the two faster planets slowly drew closer to Saturn. On the evenings of the 24th and 25th the trio will form a very close conjunction with Venus being just 1 degree from Saturn and less than 1 degree from Mercury.

For the next few nights all 3 planets should be visible in the wide field of view of a pair of binoculars or small telescope. By the 27th, Mercury and Venus will have drawn away from Saturn somewhat but will lie just 8 arc-minutes from one another, nearly indistinguishable to the unaided eye.

As June turns to July, Saturn will be lost in the glare of the setting sun. But Mercury and Venus will stay in close conjunction well into the month. On July 8th look for a very slim waxing crescent moon hovering just above the pair. Around July 15th the apparent separation of Mercury and Venus will have increased to 5 degrees. At this point Mercury will begin looping back toward the sun, while Venus continues to climb higher in our evening skies.

Contrary to popular belief, planetary conjunctions are fairly common. All the planets and the sun appear to travel along an imaginary line in the sky known as the ecliptic. Because our solar system is essentially a disk, the objects in our solar system appear to follow the same path year after year after year. Since we see these objects from Earth, which is itself moving, the planets occasionally appear to get close together in the sky. Conjunctions of 2 or 3 planets happen quite often particularly when one of them is Venus. The faster planets seem to ?catch up with? and ?pass? the slower moving ones, as we see in June.

Throughout recorded history humans have observed planetary conjunctions. In ancient times they were thought to be signs or omens. Not until recent centuries have we been able to model and therefore marvel at the workings of our solar system. Even though the conjunction of Mercury, Venus and Saturn doesn?t portend events, it is nonetheless a spectacular sight to behold.

Written by Rod Kennedy

Book Reviews: Glow in the Dark Planets, From Blue Moons to Black Holes

Glow in the Dark Planets is exactly what you’d expect. In nineteen pages, each planet of our system gets a one or two page spread of neat pictures, funky fonts and many factoids. An early reader would have no problem digesting the information on their own. But with two together, one asking questions from the front seat while the other in the back seat scurries to find answers, a neat game of Did-you-know can be had. For example, with Venus, did you know one of its mountain’s names is Danu Montes. Also, surface temperature, atmosphere and relevant space probes entice a young mind to stretch out past the limits of their vision.

Of course, the main draw for this book is the centerfold. More than twenty groovy stickers can be removed and placed anywhere; a car’s interior, inside a tent’s wall, or on your sibling’s nose. These easy to peel and re-arrange stickers depict each planet, some comets, the moon and shiny stars. Glow in the Dark Planets is a short book but it might be just the lifesaver for one too many hours in a car.

The second book, From Blue Moons to Black Holes is just as good for shortening a journey. However, it’s really a questions and answer book with a few pictures, some diagrams and lots of information. For all those really neat space questions you’ve been dying to ask, each have answers. You can test your knowledge by comparing your answers or become a rocket scientist by memorizing the given answers. Either way there’s lots to learn.

For each question, the answer comes in two parts. First there is a short yes, no or one line response. This is fabulous for those seeking answers without explanation. Following this there is an excellent discussion surrounding the question. This discussion usually tries to draw a corollary to something readily known on Earth. For example, in answering the question, ‘Could we see lunar colonies?”, the short answer is ‘Perhaps but only with a telescope.’ The discussion then goes on to note that seeing a man made object on the moon would need the object to be much bigger than the city of Los Angeles.

The answers themselves are short, to the point and stand well on their own. Where appropriate, they are linked by references to other answers. Some are opinionated, and biassed for space exploration. For example, the answer to “Should We Travel to Mars?” is a resounding Yes!

To compliment the question and answer section there is some standard astronomy fare. A section on telescope identification, selection and usage helps a reader make the step into aided astronomy. Data on the planets, their moons and eclipses also are present for an easy reference. Perhaps what may not be to everyone’s interest is a section listing every mission to our moon as well as to the other planets. However this would perfectly satisfy the trivia buff.

One other significant selling feature of From Blue Moons to Black Holes is the size (28x22cm), large font and lots of margin space. This makes for very easy reading and more importantly easy notation for adding more or updating existing information.

This summer, don’t let a long drive do you in. Nor let a perfect night’s star watching make you feel somehow out-of-it. Get some good fun astronomy books like John Starke’s Glow in the Dark Planets or a wonderful reference like Melanie Melton Knocke’s From Blue Moons to Black Holes to keep times fun and interesting.

Review by Mark Mortimer

New Horizons Prepares to Zoom to Pluto

Artist impression of the New Horizons spacecraft sweeping past Pluto. Image credit: JHUAPL/SwRI. Click to enlarge.

If all goes well, the first mission to the farthest known planet in our Solar System will launch in early 2006, and give us our first detailed views of Pluto, its moon Charon, and the Kuiper Belt Region, while completing NASA’s reconnaissance of all the planets in our Solar System.

“We’re going to a planet that we’ve never been to before,” said Dr. Alan Stern, Principal Investigator for the New Horizons mission to Pluto. “This is like something out of a NASA storybook, like in the 60’s and 70’s with all the new missions that were happening then. But this is exploration for a new century; it’s something bold and different. Being the first mission to the last planet really ‘revs’ me. There’s something special about going to a new frontier, about

Pluto is so far away (5 billion km or 3.1 billion miles when New Horizons reaches it) that no telescope, not even the Hubble Space Telescope, has been able to provide a good image of the planet, and so Pluto is a real mystery world. The existence of Pluto has only been known for 75 years, and the debate continues about its classification as a planet, although most planetary scientists classify it in the new class of planets called Ice Dwarfs. Pluto is a large, ice-rock world, born in the Kuiper Belt area of our solar system. Its moon, Charon, is large enough that some astronomers refer to the two as a binary planet. Pluto undergoes seasonal change and has an elongated and enormous 248-year orbit which causes the planet’s atmosphere to cyclically dissipate and freeze out, but later be replenished when the planet returns closer to the sun.

New Horizons will provide the first close-up look at Pluto and the surrounding region. The grand piano-sized spacecraft will map and analyze the surface of Pluto and Charon, study Pluto’s escaping atmosphere, look for an atmosphere around Charon, and perform similar explorations of one or more Kuiper Belt Objects.

The spacecraft, built at the Johns Hopkins Applied Physics Laboratory, is currently being flight tested at the Goddard Space Flight Center. Dr. Stern has been planning a mission to Pluto for quite some time, surviving through the various on-again, off-again potential missions to the outer solar system.

“I’m feeling very good about the mission,” he said in an interview from his office at the Southwest Research Institute in Boulder, Colorado. “I’ve been working on this project for about 15 years, and the first 10 years we couldn’t even get it out of the starting blocks. Now we’ve not only managed to get it funded, but we have built it and we are really looking forward to flying the mission soon if all continues to go well.”

Of the hurdles remaining to be cleared before launch, one looms rather large. New Horizons’ systems are powered by a Radioisotope Thermoelectric Generator (RTG), where heat released from the decay of radioactive materials is converted into energy. This type of power system is essential for a mission going far from the Sun like New Horizons where solar power is not an option, but it has to be approved by both NASA and the White House. The 45-day public comment period ended in April 2005, so the project now awaits final, official approval. Meanwhile, the New Horizons mission teams prepare for launch.

“We still have a lot of work in front of us,” Stern said. “All this summer we’re testing and checking out the spacecraft and the components, getting all the bugs out, and making sure its launch ready, and flight ready. That will take us through September and in October we hope to bring the spacecraft to the Cape.”

The month-long launch window for New Horizons opens on January 11, 2006.

New Horizons will be the fastest spacecraft ever launched. The launch vehicle combines an Atlas V first stage, a Centaur second stage, and a STAR 48B solid rocket third stage.

“We built the smallest spacecraft we could get away with that has all the things it needs: power, communication, computers, science equipment and redundancy of all systems, and put it on the biggest possible launch vehicle,” said Stern. “That combination is ferocious in terms of the speed we reach in deep space.”

At best speed, the spacecraft will be traveling at 50 km/second (36 miles/second), or the equivalent of Mach 85.

Stern compared the Atlas rocket to other launch vehicles. “The Saturn V took the Apollo astronauts to the moon in 3 days,” he said. “Our rocket will take New Horizons past the moon in 9 hours. It took Cassini 3 years to get to Jupiter, but New Horizons will pass Jupiter in just 13 months.”

Still, it will take 9 years and 5 months to cross our huge Solar System. A gravity assist from Jupiter is essential in maintaining the 2015 arrival date. Not being able to get off the ground early in the launch window would have big consequences later on.

“We launch in January of 2006 and arrive at Pluto in July of 2015, best case scenario,” said Stern. “If we don’t launch early in the launch window, the arrival date slips because Jupiter won’t be in as good a position to give us a good gravity assist.”

New Horizons has 18 days to launch in January 2006 to attain a 2015 arrival. After that, Jupiter’s position moves so that for every 4 or 5 days delay in launch means arriving at Pluto year later. By February 14 the window closes for a 2020 arrival. New Horizons can try to launch again in early 2007, but then the best case arrival year is 2019.

New Horizons will be carrying seven science instruments:

  • Ralph: The main imager with both visible and infrared capabilities that will provide color, composition and thermal maps of Pluto, Charon, and Kuiper Belt Objects.
  • Alice: An ultraviolet spectrometer capable of analyzing Pluto’s atmospheric structure and composition.
  • REX: The Radio Science Experiment that measures atmospheric composition and surface temperature with a passive radiometer. REX also measures the masses of objects New Horizons flies by.
  • LORRI: The Long Range Reconnaissance Imager has a telescopic camera that will map Pluto?s far side and provide geologic data.
  • PEPSSI: The Pluto Energetic Particle Spectrometer Science Investigation that will measure the composition and density of the ions escaping from Pluto’s atmosphere.
  • SWAP: Solar Wind Around Pluto, which will measure the escape rate of Pluto?s atmosphere and determine how the solar wind affects Pluto.
  • SDC: The Student Dust Counter will measure the amount of space dust the spacecraft encounters on the voyage. This instrument was designed and will be operated by students at the University of Colorado in Boulder.

Stern says the first part of the flight will keep the mission teams busy, as they need to check out the entire spacecraft, and execute the Jupiter fly-by at 13 months.

“The middle years will be long and probably — and hopefully — pretty boring,” he said, but will include yearly spacecraft and instrument checkouts, trajectory corrections, instrument calibrations and rehearsals the main mission. During the last three years of the interplanetary cruise mission teams will be writing, testing and uploading the highly detailed command script for the Pluto/Charon encounter, and the mission begins in earnest approximately a year before the spacecraft arrives at Pluto, as it begins to photograph the region.

A mission to Pluto has been a long time coming, and is popular with a wide variety of people. Children seem to have an affinity for the planet with the cartoon character name, while the National Academy of Sciences ranked a mission to Pluto as the highest priority for this decade. In 2002, when it looked as though NASA would have to scrap a mission to Pluto for budgetary reasons, the Planetary Society, among others, lobbied strongly to Congress to keep the mission alive.

Stern said the mission’s website received over a million hits the first month it was active, and the hit rate hasn’t diminished. Stern writes a monthly column on the website, http://pluto.jhuapl.edu , where you can learn more details about the mission and sign-up to have your name sent to Pluto along with the spacecraft.

While Stern is understandably excited about this mission, he says that any chance to explore is a great opportunity.

“Exploration always opens our eyes,” he said. “No one expected to find river valleys on Mars, or a volcano on Io, or rivers on Titan. What do I think we’ll find at Pluto-Charon? I think we’ll find something wonderful, and we expect to be surprised.”