Baby Stars are Swarming Around the Galactic Center

converted PNM file

The vicinity of Sagittarius A* (Sgr A*), the supermassive black hole at the Milky Way’s center, is hyperactive. Stars, gas, and dust zip around the black hole’s gravitational well at thousands of kilometers per hour. Previously, astronomers thought that only mature stars had been pulled into such rapid orbits. However, a new paper from the University of Cologne and elsewhere in Europe found that some relatively young stars are making the rounds rather than older ones, which raises some questions about the models predicting how stars form in these hyperactive regions.

Continue reading “Baby Stars are Swarming Around the Galactic Center”

Rotation Curves of Galaxies Stay Flat Indefinitely

In his classic book On the Structure of Scientific Revolutions, the philosopher Thomas Kuhn posited that, for a new scientific framework to take root, there has to be evidence that doesn’t sit well within the existing framework. For over a century now, Einstein’s theory of relativity and gravity has been the existing framework. However, cracks are starting to show, and a new paper from researchers at Case Western Reserve University added another one recently when they failed to find decreasing rotational energy in galaxies even millions of light years away from the galaxy’s center.

Continue reading “Rotation Curves of Galaxies Stay Flat Indefinitely”

Almost a Third of Early Galaxies Were Already Spirals

The graceful winding arms of the grand-design spiral galaxy M51 stretch across this image from the NASA/ESA/CSA James Webb Space Telescope. New JWST observations of the early Universe are upending our understanding of galaxy evolution. Credit: ESA/Webb, NASA & CSA, A. Adamo (Stockholm University) and the FEAST JWST team

In the years before the JWST’s launch, astronomers’ efforts to understand the early Universe were stymied by a stubborn obstacle: the light from the early Universe was red-shifted to an extreme degree. The JWST was built with extreme redshifts in mind, and one of its goals was to study Galaxy Assembly.

Once the JWST activated its segmented, beryllium eye, the Universe’s most ancient, red-shifted light became visible.

Continue reading “Almost a Third of Early Galaxies Were Already Spirals”

Which Stars are Lethal to their Planets?

Many years ago, there was a viral YouTube video called “History of the entire world, i guess,” which has been an endless source of internet memes since its release. One of the most prominent is also scientifically accurate—when describing why animals couldn’t start living on land, the video’s creator, Bill Wurtz, intones, “The Sun is a deadly laser.” 

Continue reading “Which Stars are Lethal to their Planets?”

Fish Could Turn Regolith into Fertile Soil on Mars

Mars

What a wonderful arguably simple solution. Here’s the problem, we travel to Mars but how do we feed ourselves? Sure we can take a load of food with us but for the return trip that’s a lot. If we plan to colonise the red planet we need even more. We have to grow or somehow create food while we are there. The solution is an already wonderfully simple ‘biosphere’ style system; a fish tank! New research suggests fish could be raised in an aquatic system and nutrient rich water can fertilise and grow plants in the regolith! A recent simulation showed vegetables could be grown in regolith fertilised by the fish tank water!

Continue reading “Fish Could Turn Regolith into Fertile Soil on Mars”

New Simulation Explains how Supermassive Black Holes Grew so Quickly

Supermassive Black Hole Survey. Credit: ESA/XMM-Newton/PSU/F. Zou et al./N.Trehnl/The TNG Collaboration

One of the main scientific objectives of next-generation observatories (like the James Webb Space Telescope) has been to observe the first galaxies in the Universe – those that existed at Cosmic Dawn. This period is when the first stars, galaxies, and black holes in our Universe formed, roughly 50 million to 1 billion years after the Big Bang. By examining how these galaxies formed and evolved during the earliest cosmological periods, astronomers will have a complete picture of how the Universe has changed with time.

As addressed in previous articles, the results of Webb‘s most distant observations have turned up a few surprises. In addition to revealing that galaxies formed rapidly in the early Universe, astronomers also noticed these galaxies had particularly massive supermassive black holes (SMBH) at their centers. This was particularly confounding since, according to conventional models, these galaxies and black holes didn’t have enough time to form. In a recent study, a team led by Penn State astronomers has developed a model that could explain how SMBHs grew so quickly in the early Universe.

Continue reading “New Simulation Explains how Supermassive Black Holes Grew so Quickly”

Don't Get Your Hopes Up for Finding Liquid Water on Mars

In the coming decades, NASA and China intend to send the first crewed missions to Mars. Given the distance involved and the time it takes to make a single transit (six to nine months), opportunities for resupply missions will be few and far between. As a result, astronauts and taikonauts will be forced to rely on local resources to meet their basic needs – a process known as in-situ resource utilization (ISRU). For this reason, NASA and other space agencies have spent decades scouting for accessible sources of liquid water.

Finding this water is essential for future missions and scientific efforts to learn more about Mars’s past, when the planet was covered by oceans, rivers, and lakes that may have supported life. In 2018, using ground-penetrating radar, the ESA’s Mars Express orbiter detected bright radar reflections beneath the southern polar ice cap that were interpreted as a lake. However, a team of Cornell researchers recently conducted a series of simulations that suggest there may be another reason for these bright patches that do not include the presence of water.

Continue reading “Don't Get Your Hopes Up for Finding Liquid Water on Mars”

Webb is an Amazing Supernova Hunter

80 objects (circled in green) that changed in brightness over time, as seen by JWST. Most of these are supernovae. NASA, ESA, CSA, STScI, JADES Collaboration

The James Webb Space Telescope (JWST) has just increased the number of known distant supernovae by tenfold. This rapid expansion of astronomers’ catalog of supernovae is extremely valuable, not least because it improves the reliability of measurements for the expansion of the universe.

Continue reading “Webb is an Amazing Supernova Hunter”

Echoes of Flares from the Milky Way’s Supermassive Black Hole

Michigan State University researcher Grace Sanger-Johnson found nine previously undiscovered flares from Sagittarius A*, the Milky Way’s central supermassive black hole, by sifting through a decade’s worth of X-ray data. Credit: NuSTAR/NASA
Michigan State University researcher Grace Sanger-Johnson found nine previously undiscovered flares from Sagittarius A*, the Milky Way’s central supermassive black hole, by sifting through a decade’s worth of X-ray data. Credit: NuSTAR/NASA

The supermassive black hole at the heart of our Milky Way Galaxy is a quiet monster. However, Sagittarius A* (or Sgr A* for short) is not totally dormant. Occasionally it gobbles down a blob of molecular gas or even a star and then suffers a bit of indigestion. That emits x-ray flares to surrounding space.

Continue reading “Echoes of Flares from the Milky Way’s Supermassive Black Hole”

Warp Drives Could Generate Gravitational Waves

This artist's illustration shows a spacecraft using an Alcubierre Warp Drive to warp space and 'travel' faster than light. Image Credit: NASA

Will future humans use warp drives to explore the cosmos? We’re in no position to eliminate the possibility. But if our distant descendants ever do, it won’t involve dilithium crystals, and Scottish accents will have evaporated into history by then.

Continue reading “Warp Drives Could Generate Gravitational Waves”