White Dwarf Theories Get More Proof

Image credit: McDonald Observatory
Observations of the white dwarf star, Sirius B, made with NASA’s Far Ultraviolet Spectroscopic Explorer (FUSE) satellite give astronomers firm new evidence that mathematical models widely used to predict white dwarf star mass and radius are correct.

Jay B. Holberg of the University of Arizona Lunar and Planetary Laboratory is presenting the result today at the American Astronomical Society in San Diego.

The FUSE result is important because Sirius B is one of the few stars that astronomers have to test their ideas on the relationship between mass and radius for white dwarf stars. White dwarf stars are small but astonishingly dense stars. Sirius B is the size of the Earth and as massive as the sun.

Theory that describes how white dwarf stars can exist emerged in the early 1930s, when Subramanyan Chandrasekhar ? or Chandra, as he was known ? calculated the limit to a white dwarf’s mass by applying Einstein’s theory of special relativity. It was one of the first applications of quantum mechanics to large physical systems in the sky.

No white dwarf star could be more than 1.4 times as massive as the sun or it will collapse, Chandra predicted.

“Chandra was the first person to lay out the essential details of how white dwarfs sustain themselves, and it is very, very different from the sun or any other stars,” Holberg said.

Unlike most white dwarfs, Sirius B is part of a binary system, and astronomers can determine the mass of stars in a binary system.

“Having a binary system ? when two stars orbit one another – is virtually the only way you can fundamentally measure the mass of a star,” Holberg said. “You observe their orbits, get the period, know how far away they are, and you can find the sum of the two star masses. If you can time the orbits and know how far apart the stars are, you can determine the individual star masses. That’s the most accurate way, the acceptable way to determine star masses.

“But this star has always been devilishly difficult to observe,” Holberg said. The primary star in the system, Sirius A, is 8 light years from Earth and has twice the mass of the sun. It is the brightest star in the night sky, visible below Orion. Sirius B is 10,000 times dimmer than Sirius A. Astronomers can?t even see the white dwarf companion when it comes closest to the primary star during its 50-year, very elongated orbit around Sirius A.

For the post several years, Holberg and colleagues have observed Sirius B with the Voyager and Extreme Ultraviolet Explorer spacecrafts. They have refined the star’s temperature and gravity – gravity being the gravitational field at the surface of the star – to refine estimates of its mass and radius.

“The methods we’re using are spectroscopic. They infer the mass from synthetic models that we produce from measurements of temperature and gravity, the only two parameters of matter for a white dwarf.”

Holberg and his colleagues published the best determination of Sirius B’s mass-radius relationship in 1998, but that was “still far from definitive,” Holberg said. “That is, the uncertainties are so large, that while these studies define the basic relationship, they don?t tell you lots of details we need to know about these stars.”

The FUSE observations gave Holberg and his colleagues better spectral data on Sirius B’s gravitational field and temperature needed to calculate mass. “And this is a very clean spectrum. We rolled the FUSE spacecraft to keep Sirius A from contaminating the spectrum, and we succeeded very well.

“The mathematical model very well predicts our results on the gravitational field, temperature and brightness of this white dwarf star,” Holberg said. “That helps us determine the radius of the star. What we really want to do is determine mass and radius to within one percent. By verifying the Chandrasekhar limit, you put a great deal of astrophysics on much firmer footing,” he added.

“Astronomy has reached the level where you can make very definitive comparisons between the models and the observations. And it looks like we are going to come out to what we expected,” Holberg said.

Original Source: University of Arizona News Release

Blobs Could Be Merging Galaxies

Astronomers have numerous technical terms and numbering systems for describing the universe, but one type of mysterious object has yet to be classified. For now, these oddities are named for their strange appearance. They are called blobs.

Today, at the 205th annual meeting of the American Astronomical Society in San Diego, Calif., astronomers presented new evidence in the case of the giant galactic blobs. These blobs are huge clouds of intensely glowing material that envelop faraway galaxies. Using NASA’s Spitzer Space Telescope and its powerful infrared vision, the astronomers caught a glimpse of the galaxies tucked inside the blobs. Their observations reveal monstrously bright galaxies and suggest that blobs might surround not one, but multiple galaxies in the process of merging together.

“It is possible that extremely bright galactic mergers lie at the center of all the mysterious blobs, but we still don’t know how they fuel the blobs themselves,” said Dr. Harry Teplitz, Spitzer Science Center, California Institute of Technology, Pasadena, Calif., co-author of the new research. “It’s like seeing smoke in the distance and now discovering that it’s a forest fire, not a house or car fire, but still not knowing whether it was caused by lightning or arson.”

The findings will ultimately provide a better understanding of how galaxies, including ones like our own Milky Way, form.

Blobs were first discovered about five years ago with visible-light telescopes. They are located billions of light-years away in ancient galactic structures or filaments, where thousands of young galaxies are clustered together. These large, fuzzy galactic halos are made up of hot hydrogen gas and are about 10 times as large as the galaxies they encompass. Astronomers can see glowing blobs, but they don’t know what provides the energy to light them up.

“To figure out what’s going on, we need to better characterize the galaxies at the center of the blobs,” said Dr. James Colbert, Spitzer Science Center, first author of the study.

That’s where Spitzer comes in. Spitzer can sense the infrared glow from the dusty galaxies inside the blobs. When Colbert and colleagues used Spitzer to look at four well-known blobs located in a galactic filament 11 billion light-years away, they discovered that one of them appears to be made up of three galaxies falling into each other — an unusual cosmic event. The finding is intriguing because previous observations from NASA’s Hubble Space Telescope found that another one of the four blobs surrounds a merger between two galaxies. The astronomers speculate that all blobs might share this trait; however, more evidence is needed to close the case.

One clue that the scientists might be on the right track has to do with the infrared brightness of the blob galaxies. To visible-light telescopes, these galaxies appear unremarkable. Spitzer measurements revealed that all four of the galaxies studied are among the brightest in the universe, giving off the equivalent light of trillions of Suns. Such luminous galaxies are often triggered when smaller, gas-rich ones crash together, supporting the notion that galactic mergers might make up the cores of blobs.

Even if galactic mergers are fingered as the culprit, the mystery of the giant galactic blobs will persist. Astronomers will have to figure out why mergers are producing such tremendous clouds of material.

“Far from solving the mystery of the blobs, these observations only deepen it. Not only are the gas clouds bizarre, we now know that they contain some of the brightest and most violent galaxies in the universe,” said Teplitz.

Other authors of this work include Dr. Paul Francis, The Australian National University Canberra, Australia; Dr. Povilas Palunas, University of Texas at Austin; Dr. Gerard Williger, Johns Hopkins University, Baltimore, Md.; and Dr. Bruce E. Woodgate, NASA’s Goddard Space Flight Center, Greenbelt, Md.

NASA’s Jet Propulsion Laboratory, Pasadena, Calif., manages the Spitzer Space Telescope mission for NASA’s Science Mission Directorate, Washington, D.C. Science operations are conducted at the Spitzer Science Center. The telescope’s multiband imaging photometer, which made the new Spitzer observations, was built by Ball Aerospace Corporation, Boulder, Colo., the University of Arizona, Tucson, and Boeing North American, Canoga Park, Calif. The instrument’s development was led by Dr. George Rieke, University of Arizona.

Images and additional information about the Spitzer Space Telescope are available at http://www.spitzer.caltech.edu/Media.

Original Source: NASA/JPL News Release

Planned Descent Path for Huygens

This map illustrates the planned imaging coverage for the Descent Imager/Spectral Radiometer, onboard the European Space Agency’s Huygens probe during the probe’s descent toward Titan’s surface on Jan. 14, 2005. The Descent Imager/Spectral Radiometer is one of two NASA instruments on the probe.

The colored lines delineate regions that will be imaged at different resolutions as the probe descends. On each map, the site where Huygens is predicted to land is marked with a yellow dot. This area is in a boundary between dark and bright regions.

This map was made from the images taken by the Cassini spacecraft cameras on Oct. 26, 2004, at image scales of 4 to 6 kilometers (2.5 to 3.7 miles) per pixel. The images were obtained using a narrow band filter centered at 938 nanometers – a near-infrared wavelength (invisible to the human eye) at which light can penetrate Titan’s atmosphere to reach the surface and return through the atmosphere to be detected by the camera. The images have been processed to enhance surface details. Only brightness variations on Titan’s surface are seen; the illumination is such that there is no shading due to topographic variations.

For about two hours, the probe will fall by parachute from an altitude of 160 kilometers (99 miles) to Titan’s surface. During the descent the camera on the probe and five other science instruments will send data about the moon’s atmosphere and surface back to the Cassini spacecraft for relay to Earth. The Descent Imager/Spectral Radiometer will take pictures as the probe slowly spins, and some these will be made into panoramic views of Titan’s surface.

This map (PIA06172) shows the expected coverage by the Descent Imager/Spectral Radiometer side-looking imager and two downward-looking imagers – one providing medium-resolution and the other high-resolution coverage. The planned coverage by the medium- and high-resolution imagers is the subject of the second map (PIA06173).

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini-Huygens mission for NASA’s Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging team is based at the Space Science Institute, Boulder, Colo. The Descent Imager/Spectral team is based at the University of Arizona, Tucson, Ariz.

For more information about the Cassini-Huygens mission visit http://saturn.jpl.nasa.gov . For images visit the Cassini imaging team home page http://ciclops.org .

Original Source: NASA/JPL News Release

Sedna Might Have Formed Past Pluto

Image credit: SWRI
Recently, astronomers reported the surprising discovery of a very large diameter Kuiper Belt planetoid — (90377) Sedna — on a distant, 12,500-year-long, eccentric orbit centered approximately 500 astronomical units from the Sun. Sedna’s estimated diameter is about 1,600 km, two-thirds that of Pluto. Initial studies of Sedna’s origin have speculated that it might have been ejected from the giant planets region of our solar system far inside the orbit of Pluto, or perhaps was captured from a passing star’s Kuiper Belt.

In a report published in the January 2005 issue of The Astronomical Journal, planetary scientist Dr. Alan Stern of the Space Science and Engineering Division at Southwest Research Institute? (SwRI?) shows Sedna could have formed far beyond the distance of Pluto.

“If this is actually what happened,” Stern points out, “it would indicate that our solar system’s planet factory operated across a much larger region than previously thought.” It would also indicate that the mysterious Kuiper Belt “edge” near 50 AU (one AU is the distance from the Earth to the Sun) is not an outer edge, but simply the inner edge of an annular trough, or gap, that is carved out of a much broader structure that has been called the “Kuiper disk.”

The new Sedna formation study used a planetary accretion code developed by Stern with funding from NASA’s Origins of Solar System’s Program in the late 1990s for studies of the formation of Kuiper Belt Objects. This software was used to explore the feasibility of building Sedna from boulder-sized and other small bodies at distances between 75 AU (Sedna’s closest solar approach distance) and 500 AU (Sedna’s average distance from the Sun). Stern’s Sedna formation simulations assumed that Sedna’s original orbit, while distant from the Sun, was circular. Astronomers agree that Sedna could not have formed in its present, eccentric orbit because such an orbit allows only violent collisions that prevent the growth of small bodies. Stern’s simulations further assumed that the solar nebula — the disk of material out of which the planets formed — was much more extended than most previous simulations had assumed.

“The Sedna formation simulations assumed that the primordial solar nebula was a disk about the size of those observed around many nearby middle-aged stars — like the well-known example of the 1,500-AU-wide disk around the star Beta Pictoris,” Stern says.

“The model calculations found that objects as large, or even larger, than Sedna could easily form in circular orbits at distances of 75 to 500 AU, and that their formation time could have been fairly short — just a few percent the age of the solar system,” Stern continues. “If Sedna did form this far out, it is likely to be accompanied by a cohort of other large planetoids in this very distant region of the solar system. One telltale sign that these objects were formed where they are, rather than in another location, would be if a good fraction of them are on near circular orbits.”

Original Source: SWRI News Release

Missing Link Between the Big Bang and Modern Galaxies

A team of UK and Australian astronomers today announced that it has found the missing link that directly relates modern galaxies like our own Milky Way to the Big Bang that created our Universe 14 thousand million years ago. The findings are the result of a 10-year effort to map the distribution in space of 220,000 galaxies by the 2dFGRS (2-degree Field Galaxy Redshift Survey), a consortium of astronomers, using the 3.8-m Anglo-Australian Telescope (AAT). This missing link was revealed in the existence of subtle features in the galaxy distribution in the survey. Analysis of these features has also enabled the team to weigh the universe with unprecedented accuracy.

The 2dFGRS has measured in great detail the distribution of galaxies, called the large-scale structure of the Universe. These patterns range in size from 100 million to 1 billion light years. The properties of the large-scale structure are set by physical processes that operated when the universe was very young indeed.

Dr Shaun Cole of the University of Durham, who led the research, explains: “At the moment of birth, the universe contained tiny irregularities, thought to have resulted from “quantum” or subatomic processes. These irregularities have been amplified by gravity ever since and eventually gave rise to the galaxies we see today.”

Theorists in the 1960s suggested that the primordial seeds of galaxies should be seen as ripples in the Cosmic Microwave Background (CMB) radiation emitted in the heat left over from the Big Bang, when the Universe was a mere 350,000 years old. Ripples were subsequently seen in 1992 by NASA’s COBE satellite, but until now, no firm connection could be demonstrated with galaxy formation. 2dFGRS has found that a pattern seen in these ripples has propagated to the modern Universe and can be detected in galaxies today.

The patterns in the CMB contain prominent spots about one degree across, produced by sound waves propagating in the unimaginably hot plasma of the Big Bang. These features are known as “acoustic peaks” or “baryon wiggles”. Theorists had speculated that the sound waves might have also left an imprint in the dominant component of the universe – the exotic “dark matter”, which itself drives the formation of galaxies. Physicists and astronomers set about trying to identify this imprint in maps of our own galactic neighbourhood.

After years of painstaking work taking measurements of galaxies at the Anglo-Australian Telescope and modelling their properties with sophisticated mathematical and computational techniques, the 2dFGRS team have identified the imprint of sound waves in the Big Bang. It appears as delicate features in the “power spectrum”, the statistic used by astronomers to quantify the patterns seen in maps of the galaxy distribution. These features are consistent with those seen in the microwave background – which means we understand the life history of the gas from which Galaxies formed.

The baryon features contain information about the contents of the universe, in particular about the amount of ordinary matter (known as baryons), the kind of stuff which has condensed into stars and planets and of which we ourselves are made.

Professor Carlos Frenk, Director of the Institute for Computational Cosmology of the University of Durham said: “These baryon features are the genetic fingerprint of our universe. They establish a direct evolutionary link to the Big Bang. Finding them is a milestone in our understanding of how the cosmos was formed.”

Professor John Peacock from Edinburgh University, UK team leader of 2dFGRS collaboration said: “I don’t think anyone would have expected simple cosmological theories to work so well. We’re very lucky to be around to see this picture of the universe established.”

The 2dFGRS has shown that baryons are a small component of our universe, making up a mere 18% of the total mass, with the remaining 82% appearing as dark matter. For the first time, the 2dFGRS team have broken the 10 percent accuracy barrier in measuring the total mass of the Universe.

As if this picture weren’t strange enough, the 2dFGRS also showed that all the mass in the universe (both luminous and dark) is outweighed 4:1 by an even more exotic component called “vacuum energy” or “dark energy”. This has antigravity properties, causing the expansion of the universe to speed up. This conclusion arises when combining 2dFGRS results with data on the microwave background radiation, which is left over from the time when the baryon features were created. The origin and identity of the dark energy remains one of the deepest mysteries of modern science.

Our knowledge of the microwave background improved hugely in 2003 with data from NASA’s WMAP satellite. The WMAP team combined their information with an earlier analysis of part of the 2dFGRS to conclude that we indeed live in a dark energy-dominated universe. This was dubbed “the breakthrough of the year” in 2003 by Science magazine. Now, the discovery of the cosmic missing link by the 2dFGRS team, almost exactly a year later, crowns the achievements of a decade of painstaking work.

In an interesting twist, clues to the identity of the dark energy could be gleaned by finding baryon features in the evolving galaxy distribution halfway between now and the Big Bang. UK astronomers and their collaborators across the world are now planning large galaxy surveys of very distant galaxies with this aim in mind.

Independent confirmation of the presence of baryon features in the large-scale structure comes from the US-led Sloan Digital Sky Survey. They use a complementary method that does not involve the power spectrum, and study a rare subset of galaxies over a larger volume than the 2dFGRS. Nevertheless, the conclusions are consistent, which is very satisfying.

Professor Michael Strauss from Princeton University, Spokesman for the SDSS collaboration said: “This is wonderful science. The two groups have now independently seen direct evidence for the growth of structure by gravitational instability from the initial fluctuations seen in the cosmic microwave background.”

Original Source: PPARC News Release

How Much Did the Earth Move?

NASA scientists using data from the Indonesian earthquake calculated it affected Earth’s rotation, decreased the length of day, slightly changed the planet’s shape, and shifted the North Pole by centimeters. The earthquake that created the huge tsunami also changed the Earth’s rotation.

Dr. Richard Gross of NASA’s Jet Propulsion Laboratory, Pasadena, Calif., and Dr. Benjamin Fong Chao, of NASA’s Goddard Space Flight Center, Greenbelt, Md., said all earthquakes have some affect on Earth’s rotation. It’s just they are usually barely noticeable.

“Any worldly event that involves the movement of mass affects the Earth’s rotation, from seasonal weather down to driving a car,” Chao said.

Gross and Chao have been routinely calculating earthquakes’ effects in changing the Earth’s rotation in both length-of- day as well as changes in Earth’s gravitational field. They also study changes in polar motion that is shifting the North Pole. The “mean North pole” was shifted by about 2.5 centimeters (1 inch) in the direction of 145 degrees East Longitude. This shift east is continuing a long-term seismic trend identified in previous studies.

They also found the earthquake decreased the length of day by 2.68 microseconds. Physically this is like a spinning skater drawing arms closer to the body resulting in a faster spin. The quake also affected the Earth’s shape. They found Earth’s oblateness (flattening on the top and bulging at the equator) decreased by a small amount. It decreased about one part in 10 billion, continuing the trend of earthquakes making Earth less oblate.

To make a comparison about the mass that was shifted as a result of the earthquake, and how it affected the Earth, Chao compares it to the great Three-Gorge reservoir of China. If filled, the gorge would hold 40 cubic kilometers (10 trillion gallons) of water. That shift of mass would increase the length of day by only 0.06 microseconds and make the Earth only very slightly more round in the middle and flat on the top. It would shift the pole position by about two centimeters (0.8 inch).

The researchers concluded the Sumatra earthquake caused a length of day change too small to detect, but it can be calculated. It also caused an oblateness change barely detectable, and a pole shift large enough to be possibly identified. They hope to detect the length of day signal and pole shift when Earth rotation data from ground based and space-borne position sensors are reviewed.

The researchers used data from the Harvard University Centroid Moment Tensor database that catalogs large earthquakes. The data is calculated in a set of formulas, and the results are reported and updated on a NASA Web site.

The massive earthquake off the west coast of Indonesia on December 26, 2004, registered a magnitude of nine on the new “moment” scale (modified Richter scale) that indicates the size of earthquakes. It was the fourth largest earthquake in one hundred years and largest since the 1964 Prince William Sound, Alaska earthquake.

The devastating mega thrust earthquake occurred as a result of the India and Burma plates coming together. It was caused by the release of stresses that developed as the India plate slid beneath the overriding Burma plate. The fault dislocation, or earthquake, consisted of a downward sliding of one plate relative to the overlying plate. The net effect was a slightly more compact Earth. The India plate began its descent into the mantle at the Sunda trench that lies west of the earthquake’s epicenter. For information and images on the Web, visit:

http://www.nasa.gov/vision/earth/lookingatearth/indonesia_quake.html .

For details on the Sumatra, Indonesia Earthquake, visit the USGS Internet site:

http://neic.usgs.gov/neis/bulletin/neic_slav_ts.html .

For information about NASA and agency programs Web, visit:

http://www.nasa.gov .

JPL is managed for NASA by the California Institute of Technology in Pasadena.

Original Source: NASA News Release

Three Largest Stars Discovered

Image credit: Hubble
Astronomers are announcing today the identification of three red supergiants that have the largest diameters of any normal stars known, more than a billion miles across. The report is being presented by Ms. Emily Levesque, an undergraduate junior at MIT, who has been working with an international team of astronomers, including Philip Massey (Lowell Observatory, in Flagstaff, Arizona), Knut Olsen (Cerro Tololo Inter-American Observatory, in Chile), Bertrand Plez and Eric Josselin (Universite de Montpellier II, in France), and Andre Maeder and Georges Meynet (Geneva Observatory, in Switzerland). Nat White of Lowell Observatory also participated in the study. The findings are being presented today at the American Astronomical Society meeting in San Diego, California. The group studied a sample of 74 red supergiant stars in the Milky Way. This research is significant in finally reconciling theory and observation for these stars. Red supergiants, massive stars nearing the ends of their lifetimes, are extremely cool and luminous ? and very large.

The three biggest stars are KW Sagitarii (distance 9,800 light-years), V354 Cephei (distance 9,000 light-years), and KY Cygni (distance 5,200 light-years), all with radii about 1500 times that of the Sun, or about 7 astronomical units (AU). For comparison, the well-known red supergiant star Betelgeuse in the constellation Orion is known from other work to have a radius about 650 times that of the Sun, or about 3 AU. If one of these stars were placed in the sun’s location, its outer layers would extend to midway between the orbits of Jupiter (5.2 AU) and Saturn (9.5 AU) [see figure].

The previous record holder, Herschel’s “Garnet Star” (also known as “mu Cephei”) comes in a close fourth in size in the study. The only other star for which a very large size has been claimed is the binary star system VV Cephei, which consists of a red supergiant and a hot companion orbiting within a common gaseous envelope, in which the gravitational forces of the companion have distended the surface of the supergiant and the meaning of the size of the star is therefore fuzzy. None of the stars in the new study are believed to be binaries, and thus their properties tell us about the extreme sizes that normal stars reach.

The study used the National Science Foundation’s 2.1-meter (84-inch) telescope at Kitt Peak National Observatory, located outside of Tucson, Arizona, and the 1.5-m (60-inch) telescope at Cerro Tololo Inter-American Observatory, located outside of La Serena, Chile, in the foothills of the Andes. The new observations were combined with state-of-the-art computer models that contain improved data on the molecules that are found in the outer layers of these cool stars. The analysis yielded the most accurate temperatures yet found for this type of object. The temperatures of the coolest red supergiants are about 3450 Kelvins, or about 10 percent warmer than previously thought. Combined with modern estimates of the distances of these stars, the group was able to determine the stellar sizes as well.

“The significance of this study is that for the first time in many decades there is good agreement between the theory of how large and cool these stars should be, and how large and cool we actually observe them to be,” explained Dr. Philip Massey, Astronomer at Lowell Observatory, the project’s leader. “For the past two decades there has been a significant disagreement. The problem in this case turned out NOT to be the theory, but the ‘observations’ ? the conversion between the observed qualities (brightness and spectral type) and the deduced properties (temperature and luminosity and/or size) needed improvement.” The team’s new analysis provides a better means of converting between these properties.

“These stars are not the most massive known,” noted Levesque. “They are only 25 times the mass of the sun, while the most massive stars may have as much material as 150 suns. Nor are they the most luminous, as they are only about 300,000 times the luminosity of the sun, not the factor of 5 million or so attributed to the most luminous stars. They aren’t even the coldest stars known ? brown dwarfs have such low temperatures that they can’t even fuse hydrogen. But the combination of modestly high luminosities and relatively low temperatures DOES mean that they are the biggest stars known, in terms of their stellar diameters.”

The study has been submitted to the Astrophysical Journal for review and publication. Support was provided by a grant to Lowell Observatory by the National Science Foundation, which also provided support for Ms. Levesque’s participation in the project through the Research Experiences for Undergraduates program at Northern Arizona University.

Original Source: Lowell Observatory

Hubble Could Be Seeing a Planet

Unique follow up observations carried out with NASA’s Hubble Space Telescope are providing important supporting evidence for the existence of a candidate planetary companion to a relatively bright young brown dwarf star located 225 light-years away in the southern constellation Hydra.

Astronomers at the European Southern Observatory’s Very Large Telescope (VLT) in Chile detected the planet candidate in April 2004 with infrared observations using adaptive optics to sharpen their view. The VLT astronomers spotted a faint companion object to the brown dwarf star 2MASSWJ 1207334-393254 (aka 2M1207). The object is a candidate planet because it is only one-seven-hundredth the brightness of the brown dwarf (at the longer-than-Hubble wavelengths observed with the VLT) and glimmers at barely 1800 degrees Fahrenheit, which is cooler than a light bulb filament.

Because an extrasolar planet has never been directly imaged before, this remarkable observation required Hubble’s unique abilities to do follow-up observations to test and validate if it is indeed a planet. Hubble’s Near Infrared Camera and Multi-Object Spectrometer (NICMOS) camera conducted complementary observations taken at shorter infrared wavelength observations unobtainable from the ground. This wavelength coverage is important because it is needed to characterize the object’s physical nature.

Very high precision measurements of the relative position between the dwarf and companion were obtained with NICMOS in August 2004. The Hubble images were compared to the earlier VLT observations to try and see if the two objects are really gravitationally bound and hence move across the sky together. Despite the four months between the VLT and NICMOS observations, astronomers say they can almost rule out the probability that the suspected planet is really a background object, because there was no noticeable change in its position relative to the dwarf.

If the two objects are indeed gravitationally bound together they are at least 5 billion miles apart, about 30 percent farther apart than Pluto is from the Sun. Given the mass of 2M1207, inferred from its spectrum, the companion object would take a sluggish 2,500 years to complete one orbit. Therefore, any relative motion seen between the two on much shorter time scales would reveal the candidate planet to be a background interloper and not a gravitationally bound planet.

“The NICMOS photometry supports the conjecture that the planet candidate is about five times the mass of Jupiter if it indeed orbits the brown dwarf,” says Glenn Schneider of the University of Arizona. “The NICMOS position measurements, relative to VLT’s, indicate the object is a true (and thus orbiting) companion at a 99 percent level of confidence — but further planned Hubble observations are required to eliminate the 1 percent chance that it is a coincidental background object which is not orbiting the dwarf.”

Schneider is presenting these latest Hubble observations today at the meeting of the American Astronomical Society in San Diego, Calif.

The candidate planet and dwarf are in the nearby TW Hydrae association of young stars that are estimated to be no older than 8 million years. The Hubble NICMOS observations found the object to be extremely red and relatively much brighter at longer wavelengths. The colors match theoretical expectations for an approximately 8 million-year-old object that is about five times as massive as Jupiter.

Further Hubble observations by the NICMOS team are planned in April 2005.

Original Source: Hubble News Release

What’s Up This Week – Jan 10 – Jan 16, 2005

Monday, January 10 – On this day in 1946, the US Army Signal Corps set an “astronomy first” by successfully bouncing radar waves off the Moon. Earlier today, the New Moon made its closest approach Earth (perigee) for this year – its gravitation favouring higher than normal tides – but tonight we will celebrate its absence by taking a celestial journey to the Eridanus/Fornax studies.

Starting with Alpha Fornacis, we find a beautiful disparate double, a “white” star with its yellow/orange companion. But this is not about doubles tonight – it is about deep sky – and Alpha is merely a stepping stone. Our next hop is to Beta, the guide to the NGC 1049 to the southwest. Only large aperture may reach for this one. The NGC 1049 appears to me as a very soft, very faded globular cluster. It is like a “ghost” – seen, yet not seen – an ethereal hint of what lay on the outer reaches of our own galaxy. Next stop is north, and slightly to the east for a galaxy revealed in both small and large scopes – the NGC 1097. In a small scope (114 mm minimum) it shows averted as an upright bar of light that pulls at the tips. The large scope (12.5″ and larger) will reveal a barred-spiral. The NGC 1097 is truly beautiful. The central portion of the galaxy is evenly illuminated from end to end, but at each of those ends lay the spiral arms, twisting away opposite of each other into space.

Next hop is Omega – again a double star – but much closer in magnitude this time! They can be separated easily enough with scopes at a minimum of power, but let’s head back for Alpha. Go north and a bit west into the border of Eridanus in search of NGC 1232. Smaller scopes can only make out of soft circle of light, while large ones reveal a spiral galaxy. It is not an exceptional one, but it contains a very “stellar” nucleus and fades out evenly towards its frontiers. Aversion plus magnification can only add just the most wispy of hints of a single spiral arm. From there, head for Tau 4, and a target you will repeat again and again! The NGC 1300 is an “all scopes” kind of galaxy and one you can appreciate. Smaller (114 mm) and mid-sized (150 mm) scopes will show a very bright core and transient arms upon aversion that remind me of a cat’s eye marble. Larger scopes can hold it direct, allowing for study of perhaps the finest barred-spiral I have ever encountered. Its nucleus is a bright point of light set within its structure, the “bar” itself being rather ephemeral and almost nebula-like in appearance. Two very well defined arms wrap round it, with mottled indications suggesting giant clusters of stars in this faraway island universe! A most fascinating galaxy…

Now back to Tau 4, and a shift north and a bit east to return to the “River”. NGC 1332 is our next stop, an elliptical galaxy. Just a silver oval in the small scope, and not overly improved by aperture. With the additional light gathering ability, the NGC 1332 now contains a much brighter nucleus, and very even form. Let’s go south back down into “the Furnace” and breathe the scopes east to capture planetary nebula NGC 1360. Say hello to a ball of greenish light in a small scope and go for aperture. Now we’re talking! The planetary now stretches itself out and reveals a bright, almost distracting inner star. When you can peel your concentration away from it, averted vision reveals a certain vagueness – almost a transparency – inside one very kicking planetary! Just a touch southwest of here brings up yet another bright barred-spiral, the NGC 1398. Once again, we’re looking at easily distinguishable in most scopes, but what intrigues me is WHY does this area of the sky contain so many barred spirals?! What “string” resonates in the vast reaches of space that spawns this structure?!

As the radio plays music in the night keeping us company, shall I take you on a radio journey? Let’s go to Chi 1 ,2, 3 and drop southwest for the NGC 1316. Hey up! Just another elliptical, right? Wrong. The NGC 1316 is THE radio source for Fornax A. (i wonder if it does rock and roll? 😉 The little oval smear of light shows well averted in small scopes, but aperture brings up a bonus! Just a tiny bit north of “the Source” lies a companion known the NGC 1317! Let’s hop back to the Chi triangle, and go for yet another. A degree east will bring up the NGC 1365 – “lightning” frozen in the form of a barred-spiral galaxy. There are no “hints” in form here. This 11th magnitude galaxy shows well in mid-aperture, with aversion in small and will come alive in larger scopes. The central core is Z-shaped, very definite and bright. The central bar continues to hold up to direct vision, bracketed by two arms that differ. One tends to diffuse away a bit, but the other holds a very solid brightness.

Large scopes? Come with me, and be thankful that our feet are upon the ground. I am going to take you to a galaxy playground in this region – one degree northeast of NGC 1365. Using a mid-sized scope, in this new “field” you will see two ellipticals, the NGC 1399, and the NGC 1404. For experienced galaxy hunters, you know how to play this game. Look directly at those galaxies, yet “feel” the field with your eyes. Ah, you see it! Now let’s put the power of aperture to work and watch them dance! With a quality wide-field eyepiece in a 12.5″ telescope, the Fornax Galaxy cluster is stunning. How many do you see in one degree? Nine? When you touch the scope, how many in the relative field? Twelve? Fifteen? Yes, of course some of them we’ve already visited. The tightest portion of the cluster also has designations: NGC 1374, NGC 1379, NGC 1380, NGC 1381, NGC 1387, NGC 1399, NGC 1404, NGC 1386 and NGC 1389. They will be tiny and faint, but very beautiful. You can see now why we have taken so much time to study Eridanus. It shares its soul with Fornax.

And tonight it has shared with us…

Tuesday, January 11 – Over the next two days, be sure to set your alarm for approximately 45 minutes before local sunrise to witness Mercury and Venus slow dancing on the horizon! At approximately 0.3 degrees apart, this wonderful union will be quite low (about a half fist above the horizon), but SkyWatchers will appreciate watching as the pair seems to “trade places” in the morning sky. How long can you follow them from your location?

Tonight the tender crescent of the one-day old Moon will create a similar challenge as it makes its appearance at dusk on the western horizon. Thankfully it will have set long before skies get truly dark, giving deep sky hunters an additional night to continue studies!

Wednesday, January 12 – Tonight we will greet the “Old Moon In The New Moon’s Arms” as the two-day old Selene will make a brief appearance after sunset to the west. The origins of this romantic phrase are very apropos, for many shadowy details of the full Moon are softly visible thanks to reflected sunlight from our atmosphere known as “Earthshine”. For those viewing with either telescopes of binoculars tonight, take the time to study the emerging Mare Crisium. Crisium is a unique for it does not connect with other maria and is seen on the curved limb. Viewing an area like Crisium on a curvature makes its dimensions appear smaller than they truly are. In terms of true size, Mare Crisium has about the same area as the state of Washington, yet appears visually to be only about half that size!

For Southern Hemisphere viewers, Comet C/2003 K4 (LINEAR) will be a splendid target for binoculars and small telescopes at around magnitude 7.8. On the night of January 12, it will be very close to Lambda Pictor.

Thursday, January 13 – Today Saturn reaches opposition, (my how a year flies when you’re having fun! 😉 In astronomical terms, this means that Saturn and the Sun are on opposite sides of the sky. Opposition also means that not only is Saturn closer than normal, but it will be visible all night long. Take the time tonight to watch as the Sun sets and notice its departure to the southwest – Saturn will rise at precisely the same angle to the northeast!

Tonight, let’s wait for the Moon to get as far west as possible and set our sites about halfway between Theta Auriga and El Nath. Our study object will be open cluster, M37! Apparently discovered by Messier himself in 1764, this galactic cluster will appear almost nebula-like to binoculars and very small telescopes – but comes to perfect resolution with larger instruments.

At around 4700 light years away, and spanning a massive 25 light years, the M37 is often billed as the finest of the three Aurigan opens for bigger scopes. Offering beautiful resolvability, this one contains around 150 members down to magnitude 12, and has an estimated population in excess of 500. What makes it unique? As you view, you will note the presence of several “red giants”. For the most part, open clusters are usually comprised of stars that are all about the same “age”, but the brightest star in the M37 appears orange in color and not blue! So what exactly is going on in here? Apparently some of these big, bright stars have evolved much faster – consuming their fuel at an incredible rate. Other stars in this cluster are still quite young in the cosmological scale, yet they all left the “nursery” at the same time! In theory, this allows us to judge the relative age of open clusters. For example, M36 is around 30 million years old and the M38 about 40, but the presence of the “red giants” in the M37 puts its estimated age at 150 million years! Just awesome…

Friday, January 14
Happy New Year to those who follow the Julian calendar! Today begins the year 2758 AUC and tonight we will celebrate antiquity by studying two craters on the Moon named for mythological figures – Atlas and Hercules.

Easily identified on the terminator in the northern hemisphere, this pair of craters can be spotted in binoculars and offer a wealth of detail to the small telescope. The smaller one to the west is Atlas and the larger to the east is Hercules. Because they are near the terminator tonight, their differences in depth make for a fascinating contrast in illumination. Note Hercules’ bright west wall – it is so deep that the interior is literally hidden in shadow! Atlas, only under slightly higher “sunrise”, will show the majority of grey floor with a boundary of dark shadows on its east wall and a brilliant west crest. Sharp-eyed observers may note a “Y” shaped rimae in Atlas’ interior with a small central peak caught in its intersection. Wishing you steady skies!

Saturday, January 15 – Ready for another weekend treat? Then realize for the next two nights, the “Magnificent Machholz” will race closely past a previous study star – Algol!

As we remember, Algol is a fascinating variable and for most of us it will be at minima (magnitude 3.4) tonight. Using our binoculars, we will find the 4th magnitude Comet Machholz about 2 degrees to the lower right of the “Demon Star”. Although the Moon will hamper tracing the tail for most, try de-focusing and comparing magnitudes. The fun is about to begin! If skies permit, return again tomorrow to the Machholz/Algol pairing – Beta Persi has now jumped to a magnitude brighter and the comet has moved even closer and to its lower left!

Hey, now… Astronomy doesn’t get much more exciting than that!

Sunday, January 16 – Wake up! Early this morning will be the peak of Delta Cancrid meteor shower. Yes, it’s a pretty obscure one – no exciting parent comet or disintegrating asteroid to blame it on – but since the Moon will long be set, why not give it a go? The radiant will be just slightly west of the M44 “Beehive Cluster”, making a worthy trip with binoculars. The Delta Cancrids are not exactly prolific – with a rate of only about 4 per hour – but they are very fast!

Ad speaking of fast, Mercury is now below Venus and gradually pulling away. Our planetary “pair” are now separated by 0.7 of a degree this morning and will part by almost a full degree tomorrow morning. Only SkyWatchers with an open horizon to the east will be able to catch them, because they are barely 2 degrees above the horizon before dawn. Enjoy them one last time for they are about to disappear!

Is it back yet? Yes. The Moon will definitely figure prominently in the coming days, but don’t be discouraged. The first few days of this week will see it set in ample time to enjoy deep sky studies, search out bright objects and continue to enjoy the swift progress of Comet Machholz! I hope I have challenged veteran observers and inspired those “new to the game” to seek out the beauty of our Cosmos. Until next week? I thank you for your many kind comments! I might be clouded out, but your words are as welcome as a clear night. So ask for the Moon, my friends… But keep on reaching for the stars!

Light Speed… ~Tammy Plotner

Spitzer Sees the Aftermath of a Planetary Collision

Astronomers say a dusty disc swirling around the nearby star Vega is bigger than earlier thought. It was probably caused by collisions of objects, perhaps as big as the planet Pluto, up to 2,000 kilometers (about 1,200 miles) in diameter.

NASA’s Spitzer Space Telescope has seen the dusty aftermath of this “run-in.” Astronomers think embryonic planets smashed together, shattered into pieces and repeatedly crashed into other fragments to create ever-finer debris. Vega’s light heats the debris, and Spitzer’s infrared telescope detects the radiation.

Vega, located 25 light-years away in the constellation Lyra, is the fifth brightest star in the night sky. It is 60 times brighter than our sun. Observations of Vega in 1984, with the Infrared Astronomical Satellite, provided the first evidence for dust particles around a typical star. Because of Vega’s proximity and because its pole faces Earth, it provides a great opportunity for detailed study of the dust cloud around it.

“Vega’s debris disc is another piece of evidence demonstrating the evolution of planetary systems is a pretty chaotic process,” said lead author of the study, Dr. Kate Su of the University of Arizona, Tucson, Ariz. The findings were presented today at the 205th meeting of the American Astronomical Society in San Diego.

Like a drop of ink spreading out in a glass of water, the particles in Vega’s dust cloud don’t stay close to the star long. “The dust we are seeing in the Spitzer images is being blown out by intense light from the star,” Su said. “We are witnessing the aftermath of a relatively recent collision, probably within the last million years,” she explained.

Scientists say this disc event is short-lived. The majority of the detected material is only a few microns in size, 100 times smaller than a grain of Earth sand. These tiny dust grains leave the system and dissipate into interstellar space on a time scale less than 1,000 years. “But there are so many tiny grains,” Su said. “They add up to a total mass equal to one third of the weight of our moon,” she said.

The mass of these short-lived grains implies a high dust-production rate. The Vega disc would have to have an improbably massive reservoir of planet-building material and collisions to maintain this amount of dust production throughout the star’s life (350 million years, 13 times younger than our sun). “We think a transient disc phenomenon is more likely,” Su said.

Su and her colleagues were struck by other characteristics of Vega’s debris disc, including its physical size. It has a radius of at least 815 astronomical units, roughly 20 times larger than our solar system. One astronomical unit is the distance from Earth to the sun, which is 150 million kilometers (93 million miles). A study of the disc’s surface brightness indicates the presence of an inner hole at a radius of 86 astronomical units (twice the distance between Pluto and the sun). Large embryonic planets at the edge of this inner hole may have collided to make the rest of the debris around Vega.

“Spitzer has obtained the first high spatial-resolution infrared images of Vega’s disc,” said Dr. Michael Werner, co-author and project scientist for Spitzer at NASA’s Jet Propulsion Laboratory (JPL), Pasadena, Calif. “Its sensitive infrared detectors have allowed us to see that Vega is surrounded by an enormous disc of debris,” he said.

JPL manages the Spitzer Space Telescope mission for NASA’s Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology (Caltech) in Pasadena. JPL is a division of Caltech. The multi-band imaging photometer for Spitzer, which made the new disc observations, was built by Ball Aerospace Corporation, Boulder, Colo.; the University of Arizona; and Boeing North American, Canoga Park, Calif.

Imagery and additional information about the Spitzer Space Telescope is available on the Internet, at:

http://www.spitzer.caltech.edu/Media

Original Source: NASA News Release