A White Dwarf is Surrounded by Torn-up Pieces of its Inner Planets and its Kuiper Belt

This illustration shows a white dwarf star siphoning off debris from shattered objects in a planetary system. Image Credit: NASA, ESA, Joseph Olmsted (STScI)

What will happen to our Sun?

In several billion years, it’ll cease fusion, shrivel into a white dwarf, and emanate only remnant heat. There it’ll sit, dormant and comatose.

But the Sun anchors the entire Solar System. What will happen to Earth? To the rest of the planets? To the rest of the objects in the Solar System?

Continue reading “A White Dwarf is Surrounded by Torn-up Pieces of its Inner Planets and its Kuiper Belt”

The Sun Could Hurl Powerful Storms at Earth From its Goofy Smile

NASA recently photographed the Sun "smiling" (Credit: NASA/Goddard Space Flight Center/Solar Dynamics Observatory)

Our Sun is the very reason we’re alive. It provides warmth and the energy our planet needs to keep going. Now you can add photogenic to its illustrious résumé, as NASA recently photographed our giant ball of nuclear fusion doing something quite peculiar.

Continue reading “The Sun Could Hurl Powerful Storms at Earth From its Goofy Smile”

New Observations Confirm That a Magnetar has a Solid Surface and No Atmosphere

An artist's impression of a magnetar, a highly magnetic, slowly rotating neutron star. Credit: ESO/L. Calçada

Can a star have a solid surface? It might sound counterintuitive. But human intuition is a response to our evolution on Earth, where up is up, down is down, and there are three states of matter. Intuition fails when it confronts the cosmos.

Continue reading “New Observations Confirm That a Magnetar has a Solid Surface and No Atmosphere”

Gamma-ray Bursts Don’t Always Signal the Birth of a Black Hole, Sometimes It’s Just a New Neutron Star

gamma-ray burst from neutron star merger
Artist rendering of colliding neutron stars. Credit: Robin Dienel/Carnegie Institution for Science

Way out in the universe, a long time ago, a proto-magnetar was born. The birth was heralded by a gamma-ray burst (GRB), followed by a blast of strange emissions. Astronomers once assumed that GRBs like this came from black hole births. However, observations of the new object by astronomers in England show there’s more than one way to cause a GRB. And, there’s more than one type of GRB.

Continue reading “Gamma-ray Bursts Don’t Always Signal the Birth of a Black Hole, Sometimes It’s Just a New Neutron Star”

It’ll be Tough to Stop an Asteroid at the Last Minute, but not Impossible

Artist's impression of the DART mission impacting the moonlet Dimorphos. Credit: ESA

On September 26th, 2022, NASA’s Double-Asteroid Redirect Test (DART) made history when it rendezvoused with the asteroid Didymos and impacted with its moonlet, Dimorphos. The purpose was to test the “Kinetic Impact” method, a means of defense against potentially-hazardous asteroids (PHAs) where a spacecraft collides with them to alter their trajectory. Based on follow-up observations, the test succeeded since DART managed to shorten Dimorphos’ orbit by 22 minutes. The impact also caused the moonlet to grow a visible tail!

However, as Hollywood loves to remind us, there are scenarios where a planet-killing asteroid gets very close to Earth before we could do anything to stop it. And there is no shortage of Near Earth Asteroids (NEAs) that could become potential threats someday. Hence why space agencies worldwide make it a habit of monitoring them and how close they pass to Earth. According to a new study by a group of satellite experts, it would be possible to build a rapid-response kinetic impactor mission that could rendezvous and deflect a PHA shortly before it collided with Earth.

Continue reading “It’ll be Tough to Stop an Asteroid at the Last Minute, but not Impossible”

NASA and ULA Successfully Test a Giant Inflatable Heat Shield That Could Land Heavier Payloads on Mars

Illustration of Low-Earth Orbit Flight Test of an Inflatable Decelerator (LOFTID). Credit: NASA

A new type of heat shield was successfully tested last week, with the hopes this type of inflatable decelerator could be used in the future to land humans and large payloads on Mars or for atmospheric entry on other planets on moons.

The Low-Earth Orbit Flight Test of an Inflatable Decelerator (LOFTID) was launched aboard a United Launch Alliance (ULA) Atlas V rocket on November 10 from the Vandenberg Space Force Base in California. LOFTID was a secondary payload on the launch of the Joint Polar Joint Polar Satellite System-2 (JPSS-2) weather satellite.

Continue reading “NASA and ULA Successfully Test a Giant Inflatable Heat Shield That Could Land Heavier Payloads on Mars”

Will Triton finally answer, ‘Are we alone?’

NASA’s Voyager 2 took this global color mosaic of Neptune’s largest moon, Triton, in 1989. (Credit: NASA/NASA-JPL/USGS)

We recently examined how and why Saturn’s icy moon, Enceladus, could answer the longstanding question: Are we alone? With its interior ocean and geysers of water ice that shoot out tens of kilometers into space that allegedly contains the ingredients for life, this small moon could be a prime target for future astrobiology missions. But Enceladus isn’t the only location in our solar system with active geysers, as another small moon near the edge of the solar system shares similar characteristics, as well. This is Neptune’s largest moon, Triton, which has been visited only once by NASA’s Voyager 2 in 1989. But are Triton’s geysers the only characteristics that make it a good target for astrobiology and finding life beyond Earth?

Continue reading “Will Triton finally answer, ‘Are we alone?’”

This Nearby Dwarf Galaxy has Been a Loner for Almost the Entire age of the Universe

Wolf-Lundmark-Melotte as seen by the VLT Survey Telescope. Ctedit: ESO

The James Webb Space Telescope Early Release Science (ERS) program – first released on July 12th, 2022 – has proven to be a treasure trove of scientific finds and breakthroughs. Among the many areas of research it is enabling, there’s the study of Resolved Stellar Populations (RSTs), which was the subject of ERS 1334. This refers to large groups of stars close enough that individual stars can be discerned but far enough apart that telescopes can capture many of them at once. A good example is the Wolf-Lundmark-Melotte (WLM) dwarf galaxy that neighbors the Milky Way.

Kristen McQuinn, an assistant professor of astrophysics at Rutgers University, is one of the lead scientists of the Webb ERS program whose work is focused on RSTs. Recently, she spoke to Natasha Piro, a NASA senior communications specialist, about how the JWST has enabled new studies of the WLM. Webb‘s improved observations have revealed that this galaxy hasn’t interacted with other galaxies in the past. According to McQuinn, this makes it a great candidate for astronomers to test theories of galaxy formation and evolution. Here are the highlights of that interview:

Continue reading “This Nearby Dwarf Galaxy has Been a Loner for Almost the Entire age of the Universe”

We’ll Inevitably see Another Interstellar Object. Which Ones Make the Best Targets to Visit?

We finally have the technological means to detect interstellar objects. We’ve detected two in the last few years, ‘Oumuamua and 2I/Borisov, and there are undoubtedly more out there. As such, there’s been a lot of interest in developing a mission that could visit one once we detect it. But what would such a mission look like? Now, a draft paper from a team of primarily American scientists has taken a stab at answering that question and moved us one step closer to launching such a mission.

Continue reading “We’ll Inevitably see Another Interstellar Object. Which Ones Make the Best Targets to Visit?”