Martian Crater With Dunes

This image, taken by the High Resolution Stereo Camera (HRSC) on board ESA’s Mars Express spacecraft, shows a Martian crater with a dune field on its floor.

The image was taken during orbit 427 in May 2004, and shows the crater with a dune field located in the north-western part of the Argyre Planitia crater basin.

The image is centred at Mars longitude 303? East and latitude 43? South. The image resolution is approximately 16.2 metres per pixel.

The crater is about 45 kilometres wide and 2 kilometres deep. In the north-eastern part of this crater, the complex dune field is 7 kilometres wide by 12 kilometres long.

In arid zones on Earth, these features are called ?barchanes?, which are dunes having an asymmetrical profile, with a gentle slope on the wind-facing side and a steep slope on the lee-side.

The dune field shown here suggests an easterly wind direction with its steeper western part. The composition of the dune material is not certain, but the dark sands could be of basaltic origin.

Original Source: ESA News Release

Small Telescope Finds a Huge Planet

Fifteen years ago, the largest telescopes in the world had yet to locate a planet orbiting another star. Today telescopes no larger than those available in department stores are proving capable of spotting previously unknown worlds. A newfound planet detected by a small, 4-inch-diameter telescope demonstrates that we are at the cusp of a new age of planet discovery. Soon, new worlds may be located at an accelerating pace, bringing the detection of the first Earth-sized world one step closer.

“This discovery demonstrates that even humble telescopes can make huge contributions to planet searches,” says Guillermo Torres of the Harvard-Smithsonian Center for Astrophysics (CfA), a co-author on the study.

This research study will be posted online at http://arxiv.org/abs/astro-ph/0408421 and will appear in an upcoming issue of The Astrophysical Journal Letters.

This is the very first extrasolar planet discovery made by a dedicated survey of many thousands of relatively bright stars in large regions of the sky. It was made using the Trans-Atlantic Exoplanet Survey (TrES), a network of small, relatively inexpensive telescopes designed to look specifically for planets orbiting bright stars. A team of scientists co-led by David Charbonneau (CfA/Caltech), Timothy Brown of the National Center for Atmospheric Research (NCAR) and Edward Dunham of Lowell Observatory developed the TrES network. Initial support for the TrES network came from NASA’s Jet Propulsion Laboratory and the California Institute of Technology.

“It took several Ph.D. scientists working full-time to develop the data analysis methods for this search program, but the equipment itself uses simple, off-the-shelf components,” says Charbonneau.

Although the small telescopes of the TrES network made the initial discovery, follow-up observations at other facilities were required. Observations at the W.M. Keck Observatory which, for the University of California, Caltech, and NASA, operates the world’s two largest telescopes in Hawaii, were particularly crucial in confirming the planet’s existence.

Planet Shadows
The newfound planet is a Jupiter-sized gas giant orbiting a star located about 500 light-years from the Earth in the constellation Lyra. This world circles its star every 3.03 days at a distance of only 4 million miles, much closer and faster than the planet Mercury in our solar system.

Astronomers used an innovative technique to discover this new world. It was found by the “transit method,” which looks for a dip in a star’s brightness when a planet crosses directly in front of the star and casts a shadow. A Jupiter-sized planet blocks only about 1/100th of the light from a Sun-like star, but that is enough to make it detectable.

To be successful, transit searches must examine many stars because we only see a transit if a planetary system is located nearly edge-on to our line of sight. A number of different transit searches currently are underway. Most examine limited areas of the sky and focus on fainter stars because they are more common, thereby increasing the chances of finding a transiting system. However the TrES network concentrates on searching brighter stars in larger swaths of the sky because planets orbiting bright stars are easier to study directly.

“All that we have to work with is the light that comes from the star,” says Brown. “It’s much harder to learn anything when the stars are faint.”

“It’s almost paradoxical that small telescopes are more efficient than the largest ones if you use the transit method, since we live in a time when astronomers already are planning 100-meter-diameter telescopes,” says lead author Roi Alonso of the Astrophysical Institute of the Canaries (IAC), who discovered the new planet.

Most known extrasolar planets were found using the “Doppler method,” which detects a planet’s gravitational effect on its star spectroscopically by breaking the star’s light into its component colors. However, the information that can be gleaned about a planet using the Doppler method is limited. For example, only a lower limit to the mass can be determined because the angle at which we view the system is unknown. A high-mass brown dwarf whose orbit is highly inclined to our line of sight produces the same signal as a low-mass planet that is nearly edge-on.

“When astronomers find a transiting planet, we know that its orbit is essentially edge-on, so we can calculate its exact mass. From the amount of light it blocks, we learn its physical size. In one instance, we’ve even been able to detect and study a giant planet’s atmosphere,” says Charbonneau.

Sorting Suspects
The TrES survey examined approximately 12,000 stars in 36 square degrees of the sky (an area half the size of the bowl of the Big Dipper). Roi Alonso, a graduate student of Brown’s, identified 16 possible candidates for planet transits. “The TrES survey gave us our initial line-up of suspects. Then, we had to make a lot of follow-up observations to eliminate the imposters,” says co-author Alessandro Sozzetti (University of Pittsburgh/CfA).

After compiling the list of candidates in late April, the researchers used telescopes at CfA’s Whipple Observatory in Arizona and Oak Ridge Observatory in Massachusetts to obtain additional photometric (brightness) observations, as well as spectroscopic observations that eliminated eclipsing binary stars.

In a matter of two month’s time, the team had zeroed in on the most promising candidate. High-resolution spectroscopic observations by Torres and Sozzetti using time provided by NASA on the 10-meter-diameter Keck I telescope in Hawaii clinched the case.

“Without this follow-up work the photometric surveys can’t tell which of their candidates are actually planets. The proof of the pudding is an orbit for the parent star, and we got that using the Doppler method. That’s why the Keck observations of this star were so important in proving that we had found a true planetary system,” says co-author David Latham (CfA).

Remarkably Normal
The planet, called TrES-1, is much like Jupiter in mass and size (diameter). It is likely to be a gas giant composed primarily of hydrogen and helium, the most common elements in the Universe. But unlike Jupiter, it orbits very close to its star, giving it a temperature of around 1500 degrees F.

Astronomers are particularly interested in TrES-1 because its structure agrees so well with theory, in contrast to the first discovered transiting planet, HD 209458b. The latter world contains about the same mass as TrES-1, yet is around 30% larger in size. Even its proximity to its star and the accompanying heat don’t explain such a large size.

“Finding TrES-1 and seeing how normal it is makes us suspect that HD 209458b is an `oddball’ planet,” says Charbonneau.

TrES-1 orbits its star every 72 hours, placing it among a group of similar planets known as “hot Jupiters.” Such worlds likely formed much further away from their stars and then migrated inward, sweeping away any other planets in the process. The many planetary systems found to contain hot Jupiters indicate that our solar system may be unusual for its relatively quiet history.

Both the close orbit of TrES-1 and its migration history make it unlikely to possess any moons or rings. Nevertheless, astronomers will continue to examine this system closely because precise photometric observations may detect moons or rings if they exist. In addition, detailed spectroscopic observations may give clues to the presence and composition of the planet’s atmosphere.

The paper describing these results is authored by: Roi Alonso (IAC); Timothy M. Brown (NCAR); Guillermo Torres and David W. Latham (CfA); Alessandro Sozzetti (University of Pittsburgh/CfA); Georgi Mandushev (Lowell), Juan A. Belmonte (IAC); David Charbonneau (CfA/Caltech); Hans J. Deeg (IAC); Edward W. Dunham (Lowell); Francis T. O’Donovan (Caltech); and Robert Stefanik (CfA).

This joint announcement is being issued simultaneously by CfA, IAC, NCAR, the University of Pittsburgh, and Lowell Observatory.

The W.M. Keck Observatory is operated by the California Association for Research in Astronomy, a scientific partnership of the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration.

Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

Original Source: Harvard CfA News Release

Double Jets Around Exploded Star

The spectacular NASA’s Chandra X-ray Observatory image of Cassiopeia A released today has nearly 200 times more data than the “First Light” Chandra image of this object made five years ago. The new image reveals clues that the initial explosion was far more complicated than suspected.

“Although this young supernova remnant has been intensely studied for years, this deep observation is the most detailed ever made of the remains of an exploded star,” said Martin Laming of the Naval Research Laboratory in Washington, D.C. Laming is part of a team of scientists led by Una Hwang of the Goddard Space Flight Center in Greenbelt, Maryland. “It is a gold mine of data that astronomers will be panning through for years to come.”

The one-million-second observation of Cassiopeia A uncovered two large, opposed jet-like structures that extend to about 10 light years from the center of the remnant. Clouds of iron that have remained nearly pure for the approximately 340 years since the explosion were also detected.

“The presence of the bipolar jets suggests that jets could be more common in relatively normal supernova explosions than supposed,” said Hwang. A paper by Hwang, Laming and others on the Cassiopeia A observation will appear in an upcoming issue of The Astrophysical Journal Letters.

X-ray spectra show that the jets are rich in silicon atoms and relatively poor in iron atoms. In contrast, fingers of almost pure iron gas extend in a direction nearly perpendicular to the jets. This iron was produced in the central, hottest regions of the star. The high silicon and low iron abundances in the jets indicate that massive, matter-dominated jets were not the immediate cause of the explosion, as these should have carried out large quantities of iron from the central regions of the star.

A working hypothesis is that the explosion produced high-speed jets similar to those in hypernovae that produce gamma-ray bursts, but in this case, with much lower energies. The explosion also left a faint neutron star at the center of the remnant. Unlike the rapidly rotating neutron stars in the Crab Nebula and Vela supernova remnants that are surrounded by dynamic magnetized clouds of electrons, this neutron star is quiet and faint. Nor has pulsed radiation been detected from it. It may have a very strong magnetic field generated during the explosion that helped to accelerate the jets, and today resembles other strong-field neutron stars (a.k.a. “magnetars”) in lacking a wind nebula.

Chandra was launched aboard the Space Shuttle Columbia on July 23, 1999. Less than a month later, it was able to start taking science measurements along with its calibration data. The original Cassiopeia A observation was taken on August 19, 1999, and then released to the scientific community and the public one week later on August 26. At launch, Chandra’s original mission was intended to be five years. Having successfully completed that objective, NASA announced last August that the mission would be extended for another five years.

The data for this new Cas A image were obtained by Chandra’s Advanced CCD Imaging Spectrometer (ACIS) instrument during the first half of 2004. Due to its value to the astronomical community, this rich dataset was made available immediately to the public.

NASA’s Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA’s Office of Space Science, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.

Additional information and images are available at:

http://chandra.harvard.edu
and
http://chandra.nasa.gov

Original Source: Chandra News Release

Gone for a Week… Now I’m Back

In case you hadn’t noticed, I didn’t update Universe Today all last week. I was just in the process of working on Monday’s issue when I found out that my Grandma was very sick in the hospital, and probably wouldn’t last too much longer. I rushed back to Vancouver to see her, and she ended up passing away on Tuesday morning. She was 96, and had lived a long and happy life. I spent the rest of the week hanging out with my family, and attending the memorial – I didn’t really feel like working on the website. 🙁

Strangely, the news didn’t wait for me, so I’ve spent the weekend catching up. That’s why the next issue’s pretty big.

Thanks for all your support.

Fraser Cain
Publisher
Universe Today

More Evidence for Past Water on Mars

Now that NASA’s Mars Exploration Rover Spirit is finally examining bedrock in the “Columbia Hills,” it is finding evidence that water thoroughly altered some rocks in Mars’ Gusev Crater.

Spirit and its twin, Opportunity, completed successful three-month primary missions on Mars in April and are returning bonus results during extended missions. They remain in good health though beginning to show signs of wear.

On Opportunity, a tool for exposing the insides of rocks stopped working Sunday, but engineers are optimistic that the most likely diagnosis is a problem that can be fixed soon. “It looks like there’s a pebble trapped between the cutting heads of the rock abrasion tool,” said Chris Salvo, rover mission manager at NASA’s Jet Propulsion Laboratory, Pasadena, Calif. “We think we can treat it by turning the heads in reverse, but we are still evaluating the best approach to remedy the situation. There are several options available to us.”

Opportunity originally landed right beside exposed bedrock and promptly found evidence there for an ancient body of saltwater. On the other hand, it took Spirit half a year of driving across a martian plain to reach bedrock in Gusev Crater. Now, Spirit’s initial inspection of an outcrop called “Clovis” on a hill about 9 meters (30 feet) above the plain suggests that water may once have been active at Gusev.

“We have evidence that interaction with liquid water changed the composition of this rock,” said Dr. Steve Squyres of Cornell University, Ithaca, N.Y., principal investigator for the science instruments on both rovers. “This is different from the rocks out on the plain, where we saw coatings and veins apparently due to effects of a small amount of water. Here, we have a more thorough, deeper alteration, suggesting much more water.”

Squyres said, “To really understand the conditions that altered Clovis, we’d like to know what it was like before the alteration. We have the ‘after.’ Now we want the ‘before.’ If we’re lucky, there may be rocks nearby that will give us that.”

Dr. Doug Ming, a rover science team member from NASA’s Johnson Space Center, Houston, said indications of water affecting Clovis come from analyzing the rock’s surface and interior with Spirit’s alpha particle X-ray spectrometer and finding relatively high levels of bromine, sulfur and chlorine inside the rock. He said, “This is also a very soft rock, not like the basaltic rocks seen back on the plains of Gusev Crater. It appears to be highly altered.”

Rover team members described the golf-cart-sized robots’ status and recent findings in a briefing at JPL today.

Opportunity has completed a transect through layers of rock exposed in the southern inner slope of stadium-sized “Endurance Crater.” The rocks examined range from outcrops near the rim down through progressively older and older layers to the lowest accessible outcrop, called “Axel Heiberg” after a Canadian Arctic island. “We found different compositions in different layers,” said Dr. Ralf Gellert, of Max-Planck-Institut fur Chemie, Mainz, Germany. Chlorine concentration increased up to threefold in middle layers. Magnesium and sulfur declined nearly in parallel with each other in older layers, suggesting those two elements may have been dissolved and removed by water.

Small, gray stone spheres nicknamed “blueberries” are plentiful in Endurance just as they were at Opportunity’s smaller landing-site crater, “Eagle.” Pictures from the rover’s microscopic imager show a new variation on the blueberries throughout a reddish-tan slab called “Bylot” in the Axel Heiberg outcrop. “They’re rougher textured, they vary more in size, and they’re the color of the rock, instead of gray,” said Zoe Learner, a science team collaborator from Cornell. “We’ve noticed that in some cases where these are eroding, you can see a regular blueberry or a berry fragment inside.” One possibility is that a water-related process has added a coarser outer layer to the blueberries, she said, adding, “It’s still really a mystery.”

JPL, a division of the California Institute of Technology in Pasadena, manages the Mars Exploration Rover project for NASA’s Science Mission Directorate, Washington. Images and additional information about the project are available from JPL at http://marsrovers.jpl.nasa.gov and from Cornell University at http://athena.cornell.edu .

Original Source: NASA/JPL News Release

Ganymede’s Lumpy Interior

Scientists have discovered irregular lumps beneath the icy surface of Jupiter’s largest moon, Ganymede. These irregular masses may be rock formations, supported by Ganymede’s icy shell for billions of years. This discovery comes nearly a year after the orchestrated demise of NASA’s Galileo spacecraft into Jupiter’s atmosphere and more than seven years after the data were collected.

Researchers at NASA’s Jet Propulsion Laboratory, Pasadena, Calif., and the University of California, Los Angeles, report their findings in a paper that will appear in the Aug. 13 issue of the journal Science.

The findings have caused scientists to rethink what the interior of Ganymede might contain. The reported bulges reside in the interior, and there are no visible surface features associated with them. This tells scientists that the ice is probably strong enough, at least near the surface, to support these possible rock masses from sinking to the bottom of the ice for billions of years. But this anomaly could also be caused by piles of rock at the bottom of the ice.

“The anomalies could be large concentrations of rock at or underneath the ice surface. They could also be in a layer of mixed ice and rock below the surface with variations in the amount of rock,” said Dr. John Anderson, a scientist and the paper’s lead author at JPL. “If there is a liquid water ocean inside Ganymede’s outer ice layer there might be variations in its depth with piles of rock at the ocean bottom. There could be topographic variations in a hidden rocky surface underlying a deep outer icy shell. There are many possibilities, and we need to do more studies.”

Dr. Gerald Schubert, co-author at UCLA, said “Although we don’t yet have anything definitive about the depth at this point, we did not expect Ganymede’s ice shell to be strong enough to support these lumpy mass concentrations. Thus, we expect that the irregularities would be close to the surface where the ice is coldest and strongest, or at the bottom of the thick ice shell resting on the underlying rock. It would really be a surprise if these masses were deep and in the middle of the ice shell.”

Ganymede has three main layers. A sphere of metallic iron at the center (the core), a spherical shell of rock (mantle) surrounding the core, and a spherical shell of mostly ice surrounding the rock shell and the core. The ice shell on the outside is very thick, maybe 800 kilometers (497 miles) thick. The surface is the very top of the ice shell. Though it is mostly ice, the ice shell might contain some rock mixed in. Scientists believe there must be a fair amount of rock in the ice near the surface. Variations in this amount of rock may be the source of these possible rock formations.

Scientists stumbled on the results by studying Doppler measurements of Ganymede’s gravity field during Galileo’s second flyby of the moon in 1996. Scientists were measuring the effect of the moon’s gravity on the spacecraft as it flew by. They found unexpected variations.

“Believe it or not, it took us this long to straighten out the anomaly question, mostly because we were analyzing all 31 close flybys for all four of Jupiter’s large moons,” said Anderson. “In the end, we concluded that there is only one flyby, the second flyby of Ganymede, where mass anomalies are evident.”

Scientists have seen mass concentration anomalies on one other moon before, Earth’s, during the first lunar orbiter missions in the 1960s. The lunar mass concentrations during the Apollo moon mission era were due to lava in flat basins. However, scientists cannot draw any similarities between these mass concentrations and what they see at Ganymede.

“The fact that these mass anomalies can be detected with just flybys is significant for future missions,” said Dr. Torrence Johnson, former Galileo project scientist. “With this type of information you could make detailed gravity and altitude maps that allow us to actually map structures within the ice crust or on the rocky surface. Knowing more about the interior of Ganymede raises the level of importance of looking for gravity anomalies around Jupiter’s moons and gives us something to look for. This might be something NASA’s proposed Jupiter Icy Moons Orbiter Mission could probe into deeper.”

The paper was co-authored by Dr. Robert A. Jacobson and Eunice L. Lau of JPL, with Dr. William B. Moore and Jennifer L. Palguta of UCLA. JPL is a division of the California Institute of Technology in Pasadena. JPL designed and built the Galileo orbiter, and operated the mission. For images and information about the Galileo mission, visit http://galileo.jpl.nasa.gov.

Helicopter Will Catch Samples from Genesis

In a dramatic ending that marks a beginning in scientific research, NASA’s Genesis spacecraft is set to swing by Earth and jettison a sample return capsule filled with particles of the Sun that may ultimately tell us more about the genesis of our solar system.

“The Genesis mission — to capture a piece of the Sun and return it to Earth — is truly in the NASA spirit: a bold, inspiring mission that makes a fundamental contribution to scientific knowledge,” said Steven Brody, NASA’s program executive for the Genesis mission, NASA Headquarters, Washington.

On September 8, 2004, the drama will unfold over the skies of central Utah when the spacecraft’s sample return capsule will be snagged in midair by helicopter. The rendezvous will occur at the Air Force’s Utah Test and Training Range, southwest of Salt Lake City.

“What a prize Genesis will be,” said Genesis Principal Investigator Dr. Don Burnett of the California Institute of Technology, Pasadena, Calif. “Our spacecraft has logged almost 27 months far beyond the moon’s orbit, collecting atoms from the Sun. With it, we should be able to say what the Sun is composed of, at a level of precision for planetary science purposes that has never been seen before.”

The prizes Burnett and company are waiting for are hexagonal wafers of pure silicon, gold, sapphire, diamond and other materials that have served as a celestial prison for their samples of solar wind particles. These wafers have weathered 26-plus months in deep space and are now safely stowed in the return capsule. If the capsule were to descend all the way to the ground, some might fracture or break away from their mountings; hence, the midair retrieval by helicopter, with crew members including some who have performed helicopter stunt work for Hollywood.

“These guys fly in some of Hollywood’s biggest movies,” said Don Sweetnam, Genesis project manager at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. “But this time, the Genesis capsule will be the star.”

The Genesis capsule — carrying the agency’s first sample return since the final Apollo lunar mission in 1972, and the first material collected beyond the Moon — will enter Earth’s atmosphere at 9:55 am Mountain Time. Two minutes and seven seconds after atmospheric entry, while still flying supersonically, the capsule will deploy a drogue parachute at 33 kilometers (108,000 feet) altitude. Six minutes after that, the main parachute, a parafoil, will deploy 6.1 kilometers (20,000 feet) up. Waiting below will be two helicopters and their flight crews looking for their chance to grab a piece of the Sun.

“Each helicopter will carry a crew of three,” said Roy Haggard, chief executive officer of Vertigo Inc. and director of flight operations for the lead helicopter. “The lead helicopter will deploy an eighteen-and-a-half foot long pole with what you could best describe as an oversized, Space-Age fishing hook on its end. When we make the approach we want the helicopter skids to be about eight feet above the top of the parafoil. If for some reason the capture is not successful, the second helicopter is 1,000 feet behind us and setting up for its approach. We estimate we will have five opportunities to achieve capture.”

The helicopter that does achieve capture will carry the sample canister to a clean room at the Michael Army Air Field at the U.S. Army Dugway Proving Ground, where scientists await their cosmic prize. The samples will then be moved to a special laboratory at NASA’s Johnson Space Center, Houston, where they will be preserved and studied by scientists for many years to come.

“I understand much of the interest is in how we retrieve Genesis,” added Burnett. “But to me the excitement really begins when scientists from around the world get hold of those samples for their research. That will be something.”

JPL, a division of the California Institute of Technology, manages the Genesis mission for NASA’s Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, developed and operates the spacecraft. Los Alamos National Laboratory and NASA’s Johnson Space Center contributed to Genesis payload development, and the Johnson Space Center will curate the sample and support analysis and sample allocation.

News and information are available at http://www.nasa.gov/genesis. More detailed background on the mission is available at http://genesismission.jpl.nasa.gov/.

Original Source: NASA News Release

Estimating the Age of the Milky Way

Observations by an international team of astronomers with the UVES spectrometer on ESO’s Very Large Telescope at the Paranal Observatory (Chile) have thrown new light on the earliest epoch of the Milky Way galaxy.

The first-ever measurement of the Beryllium content in two stars in a globular cluster (NGC 6397) – pushing current astronomical technology towards the limit – has made it possible to study the early phase between the formation of the first generation of stars in the Milky Way and that of this stellar cluster. This time interval was found to amount to 200 – 300 million years.

The age of the stars in NGC 6397, as determined by means of stellar evolution models, is 13,400 ? 800 million years. Adding the two time intervals gives the age of the Milky Way, 13,600 ? 800 million years.

The currently best estimate of the age of Universe, as deduced, e.g., from measurements of the Cosmic Microwave Background, is 13,700 million years. The new observations thus indicate that the first generation of stars in the Milky Way galaxy formed soon after the end of the ~200 million-year long “Dark Ages” that succeeded the Big Bang.

The age of the Milky Way
How old is the Milky Way ? When did the first stars in our galaxy ignite ?

A proper understanding of the formation and evolution of the Milky Way system is crucial for our knowledge of the Universe. Nevertheless, the related observations are among the most difficult ones, even with the most powerful telescopes available, as they involve a detailed study of old, remote and mostly faint celestial objects.

Globular clusters and the ages of stars

Modern astro physics is capable of measuring the ages of certain stars, that is the time elapsed since they were formed by condensation in huge interstellar clouds of gas and dust. Some stars are very “young” in astronomical terms, just a few million years old like those in the nearby Orion Nebula. The Sun and its planetary system was formed about 4,560 million years ago, but many other stars formed much earlier. Some of the oldest stars in the Milky Way are found in large stellar clusters, in particular in “globular clusters” (PR Photo 23a/04), so called because of their spheroidal shape.

Stars belonging to a globular cluster were born together, from the same cloud and at the same time. Since stars of different masses evolve at different rates, it is possible to measure the age of globular clusters with a reasonably good accuracy. The oldest ones are found to be more than 13,000 million years old.

Still, those cluster stars were not the first stars to be formed in the Milky Way. We know this, because they contain small amounts of certain chemical elements which must have been synthesized in an earlier generation of massive stars that exploded as supernovae after a short and energetic life. The processed material was deposited in the clouds from which the next generations of stars were made, cf. ESO PR 03/01.

Despite intensive searches, it has until now not been possible to find less massive stars of this first generation that might still be shining today. Hence, we do not know when these first stars were formed. For the time being, we can only say that the Milky Way must be older than the oldest globular cluster stars.

But how much older?

Beryllium to the rescue
What astrophysicists would like to have is therefore a method to measure the time interval between the formation of the first stars in the Milky Way (of which many quickly became supernovae) and the moment when the stars in a globular cluster of known age were formed. The sum of this time interval and the age of those stars would then be the age of the Milky Way.

New observations with the VLT at ESO’s Paranal Observatory have now produced a break-through in this direction. The magic element is “Beryllium”!

Beryllium is one of the lightest elements [2] – the nucleus of the most common and stable isotope (Beryllium-9) consists of four protons and five neutrons. Only hydrogen, helium and lithium are lighter. But while those three were produced during the Big Bang, and while most of the heavier elements were produced later in the interior of stars, Beryllium-9 can only be produced by “cosmic spallation”. That is, by fragmentation of fast-moving heavier nuclei – originating in the mentioned supernovae explosions and referred to as energetic “galactic cosmic rays” – when they collide with light nuclei (mostly protons and alpha particles, i.e. hydrogen and helium nuclei) in the interstellar medium.

Galactic cosmic rays and the Beryllium clock
The galactic cosmic rays travelled all over the early Milky Way, guided by the cosmic magnetic field. The resulting production of Beryllium was quite uniform within the galaxy. The amount of Beryllium increased with time and this is why it might act as a “cosmic clock”.

The longer the time that passed between the formation of the first stars (or, more correctly, their quick demise in supernovae explosions) and the formation of the globular cluster stars, the higher was the Beryllium content in the interstellar medium from which they were formed. Thus, assuming that this Beryllium is preserved in the stellar atmosphere, the more Beryllium is found in such a star, the longer is the time interval between the formation of the first stars and of this star.

The Beryllium may therefore provide us with unique and crucial information about the duration of the early stages of the Milky Way.

A very difficult observation
So far, so good. The theoretical foundations for this dating method were developed during the past three decades and all what is needed is then to measure the Beryllium content in some globular cluster stars.

But this is not as simple as it sounds! The main problem is that Beryllium is destroyed at temperatures above a few million degrees. When a star evolves towards the luminous giant phase, violent motion (convection) sets in, the gas in the upper stellar atmosphere gets into contact with the hot interior gas in which all Beryllium has been destroyed and the initial Beryllium content in the stellar atmosphere is thus significantly diluted. To use the Beryllium clock, it is therefore necessary to measure the content of this element in less massive, less evolved stars in the globular cluster. And these so-called “turn-off (TO) stars” are intrinsically faint.

In fact, the technical problem to overcome is three-fold: First, all globular clusters are quite far away and as the stars to be measured are intrinsically faint, they appear quite faint in the sky. Even in NGC6397, the second closest globular cluster, the TO stars have a visual magnitude of ~16, or 10000 times fainter than the faintest star visible to the unaided eye. Secondly, there are only two Beryllium signatures (spectral lines) visible in the stellar spectrum and as these old stars do contain comparatively little Beryllium, those lines are very weak, especially when compared to neighbouring spectral lines from other elements. And third, the two Beryllium lines are situated in a little explored spectral region at wavelength 313 nm, i.e., in the ultraviolet part of the spectrum that is strongly affected by absorption in the terrestrial atmosphere near the cut-off at 300 nm, below which observations from the ground are no longer possible.

It is thus no wonder that such observations had never been made before, the technical difficulties were simply unsurmountable.

VLT and UVES do the job
Using the high-performance UVES spectrometer on the 8.2-m Kuyen telescope of ESO’s Very Large Telescope at the Paranal Observatory (Chile) which is particularly sensitive to ultraviolet light, a team of ESO and Italian astronomers [1] succeeded in obtaining the first reliable measurements of the Beryllium content in two TO-stars (denoted “A0228” and “A2111”) in the globular cluster NGC 6397 (PR Photo 23b/04). Located at a distance of about 7,200 light-years in the direction of a rich stellar field in the southern constellation Ara, it is one of the two nearest stellar clusters of this type; the other is Messier 4.

The observations were done during several nights in the course of 2003. Totalling more than 10 hours of exposure on each of the 16th-magnitude stars, they pushed the VLT and UVES towards the technical limit. Reflecting on the technological progress, the leader of the team, ESO-astronomer Luca Pasquini, is elated: “Just a few years ago, any observation like this would have been impossible and just remained an astronomer’s dream!”

The resulting spectra (PR Photo 23c/04) of the faint stars show the weak signatures of Beryllium ions (Be II). Comparing the observed spectrum with a series of synthetic spectra with different Beryllium content (in astrophysics: “abundance”) allowed the astronomers to find the best fit and thus to measure the very small amount of Beryllium in these stars: for each Beryllium atom there are about 2,224,000,000,000 hydrogen atoms.

Beryllium lines are also seen in another star of the same type as these stars, HD 218052, cf. PR Photo 23c/04. However, it is not a member of a cluster and its age is by far not as well known as that of the cluster stars. Its Beryllium content is quite similar to that of the cluster stars, indicating that this field star was born at about the same time as the cluster.

From the Big Bang until now
According to the best current spallation theories, the measured amount of Beryllium must have accumulated in the course of 200 – 300 million years. Italian astronomer Daniele Galli, another member of the team, does the calculation: “So now we know that the age of the Milky Way is this much more than the age of that globular cluster – our galaxy must therefore be 13,600 ? 800 million years old. This is the first time we have obtained an independent determination of this fundamental value!”.

Within the given uncertainties, this number also fits very well with the current estimate of the age of the Universe, 13,700 million years, that is the time elapsed since the Big Bang. It thus appears that the first generation of stars in the Milky Way galaxy was formed at about the time the “Dark Ages” ended, now believed to be some 200 million years after the Big Bang.

It would seem that the system in which we live may indeed be one of the “founding” members of the galaxy population in the Universe.

More Information
The research presented in this press release is discussed in a paper entitled “Be in turn-off stars of NGC 6397: early Galaxy spallation, cosmochronology and cluster formation” by L. Pasquini and co-authors that will be published in the European research journal “Astronomy & Astrophysics” (astro-ph/0407524).

Original Source: ESO News Release

Rosetta Can “Smell” a Comet

Image credit: ESA
One of the ingenious instruments on board Rosetta is designed to ?smell? the comet for different substances, analysing samples that have been ?cooked? in a set of miniature ovens.

ESA?s Rosetta will be the first space mission ever to land on a comet. After its lander reaches Comet 67P/Churyumov-Gerasimenko, the main spacecraft will follow the comet for many months as it heads towards the Sun.

Rosetta’s task is to study comets, which are considered the primitive building blocks of the Solar System. This will help us to understand if life on Earth began with the help of ‘comet seeding’.

The Ptolemy instrument is an ?Evolved Gas Analyser?, the first example of a new concept in space instruments, devised to tackle the challenge of analysing substances ?on location? on bodies in our Solar System.

Weighing just 4.5 kilograms and about the size of a shoe box, it was produced by a collaboration of the UK?s Rutherford Appleton Laboratory and Open University.

The analysis of these samples from the surface of the comet will establish what the cometary nucleus is made from, providing valuable information about these most primitive objects.

After the lander touches down on the comet, the Ptolemy instrument will collect comet nucleus material, believed to be a frozen mixture of ices, dust and tar, using the Sampling, Drilling and Distribution system (SD2) supplied by Tecnospazio Milano of Italy. SD2 will drill for small cores of ice and dust from depths of down to 250 millimetres.

Samples collected in this way will be delivered to one of four tiny ?ovens? dedicated to Ptolemy, which are mounted on a circular, rotatable carousel. The German-supplied carousel has 32 of these ovens, with the remainder being used by other Rosetta instruments.

Of the four Ptolemy ovens, three are for solid samples collected and delivered by SD2 while the fourth will be used to collect volatile materials from the near-surface cometary atmosphere.

By heating the solid samples to 800 ?C, the oven converts them into gases which then pass along a pipe into Ptolemy. The gas will then be separated into its constituent chemical species using a gas chromatograph.

Ptolemy can then determine which chemicals are present in the comet sample, and hence help to build up a detailed picture of what the comet is made from.

It does this using the world?s smallest ?ion-trap mass spectrometer?, a small, low-power device built with the latest miniature technology. This device will find out what gases are present in any particular sample and measure stable isotope ratios.

Original Source: ESA News Release

Eroded Valleys on Mars

This image, taken by the High Resolution Stereo Camera (HRSC) on board ESA’s Mars Express spacecraft, shows the Dao Valles and Niger Valles, a system of outflow channels on Mars.

The image was taken during orbit 528 in June 2004, and shows the Dao Valles and Niger Valles areas at a point where the north-eastern Hellas impact crater basin and the Hesperia Planum volcanic region meet.

The image is centred at Mars longitude 93? East and latitude 32? South. The image resolution is 40 metres per pixel.

The outflow channel system is, in some areas, 40 kilometres wide. The north-eastern ends of the two valleys are almost 200 metres deeper than the south-western regions which are also shown here. The northern Dao Valles, 2400 metres deep, is about 1000 metres deeper than the more southern Niger Valles.

The structure of the valley floor of the Niger Valles is characterised by terraced basins and chaotic fractures. The floor of the Dao Valles is much smoother, but covered with strongly eroded remnants.

These eroded valleys are in a region which is part of the southern flank of the Hadriaca Patera volcano. The surrounding surface is formed by lava streams, probably in a ‘runoff’ process.

Original Source: ESA News Release