Saturn’s Irregular Shepherd Moon

In its own way, the shepherd moon Prometheus (102 kilometers, 63 miles across) is one of the lords of Saturn’s rings. The little moon maintains the inner edge of Saturn’s thin, knotted F ring, while its slightly smaller cohort Pandora (84 kilometers, or 52 miles across) guards the ring’s outer edge.

This view is a composite of nine raw images combined in a way that improves resolution and reduces noise. The final image was magnified by a factor of five. One of the component images was previously released (see PIA 06098).

The image clearly shows that Prometheus is not round, but instead has an oblong, potato-like shape. The moon was discovered during the Voyager mission, and scientists then noted ridges, valleys and craters on its surface. Hints of its varied topography are present in this view, although Cassini will likely obtain much better images of Prometheus later in the mission.

The component images were taken over about ten and a half minutes. During that time, the spacecraft’s motion caused some blurring of the F ring in the background. Cassini was below the ring plane at the time the images were obtained, and the view here is across the rings toward the distant arm of the F ring. Sunlight is coming from below left.

These images were obtained with the Cassini spacecraft wide angle camera on July 1, 2004, around the time Cassini entered Saturn’s orbit. The spacecraft’s distance from the planet ranged from approximately 181,000 to 190,000 kilometers (112,000 to 118,000 miles) during the time the exposures were taken. The image scale is approximately 11 kilometers (7 miles) per pixel.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini-Huygens mission for NASA’s Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging team is based at the Space Science Institute, Boulder, Colo.

For more information about the Cassini-Huygens mission, visit http://saturn.jpl.nasa.gov and the Cassini imaging team home page, http://ciclops.org .

Original Source: NASA/JPL/SSI News Release

Wallpaper: Canada-France-Hawaii Telescope 25th Anniversary

Twenty-five years ago, on September 28, 1979, the Canada-France-Hawaii Telescope (CFHT) was inaugurated on top of Mauna-Kea, a 4,200-meter high dormant volcano on the island of Hawai?i.

From the photographic emulsion of the first light to today’s 340 Mega-Pixel digital camera, CHFT?s instruments are cutting edge; its camera is the largest ever built in operation on a telescope. With high-resolution or multi-object spectroscopy, adaptive optics and polarimetry, CFHT has played an important role for a quarter of a century in the development of astronomy, thanks to the support of its member agencies in Canada, France and the State of Hawaii.

Once one of the large telescopes in the world, with a mirror 3.6-m in diameter (a ‘small’ telescope by today’s standards), CFHT continues to serve the astronomical community with stunning images and groundbreaking discoveries, from the small bodies of our solar system to remote galaxies; this has been possible due to a state-of-the-art instrument complement well-suited to the relatively modest size of its mirror and the extraordinary quality of its site.

The spectacular image released today is one of the best ground-based images ever made combining wide field and high resolution. It is the result of tens of hours of telescope time spent on a single 1-degree by 1-degree field for the CFHT Legacy Survey (CFHTLS), one of CFHT’s most ambitious scientific endeavors so far. Canada and France are devoting 500 nights of telescope time to the CFHTLS over 5 years to tackle important questions in today’s astronomy.

While there are still years to go to complete the CFHTLS, this image comes as a spectacular milestone to celebrate 25 years of excellence… and counting!

Original Source: CFHT News Release

NASA Pushes the Limits with New Awards

The NASA Institute for Advanced Concepts (NIAC) has announced its 2004 Phase 1 awards. Twelve proposals to boldly go beyond the frontiers of space exploration were selected for a six-month study period beginning in October 2004.

The NIAC was created in 1998 to solicit revolutionary concepts from people and organizations outside the agency that could greatly advance NASA’s missions. The proposals push the limits of known science and technology. The proposals are expected to take at least a decade to be fully realized. NIAC’s intention is to discover ideas that may result in beneficial changes to NASA’s long-range plans.

“We are thrilled to team up with imaginative people from industry and universities to discover innovative systems that meet the tremendous challenge of space exploration and development,” said Dr. Robert Cassanova of the Universities Space Research Organization (USRA), and NIAC director. The USRA runs the Institute for NASA.

The NIAC sponsors research in two phases. Proposals selected for Phase 1 awards typically receive up to $75,000 for a six-month study that validates the viability of the concept and identifies challenges that must be overcome to make the proposal a reality.

The results of the Phase 1 studies are evaluated. The most promising are selected for further research into the major feasibility issues associated with cost, performance, development time, and technology through a Phase 2 award. Phase 2 studies can be up to two years long and receive as much as $400,000.

Proposals selected for the 2004 Phase 1 awards:

? A Deep-Field Infrared Observatory near the Lunar Pole (Principal Investigator (PI): Dr. Roger J. Angel, University of Arizona, Tucson, Ariz.)

? Extremely Large Swarm Array of Picosats for Microwave/RF Earth Sensing, Radiometry, and Mapping (PI: Ivan Bekey, Bekey Designs Inc., Annandale, Va.)

? Redesigning Living Organisms to Survive on Mars (PI: Dr. Wendy F. Boss, North Carolina State University, Raleigh, N.C.)

? Analysis of a Lunar Base Electrostatic Radiation Shield Concept (PI: Dr. Charles R. Buhler, ASRC Aerospace Corporation, Kennedy Space Center, Fla.)

? New Worlds Imager (PI: Dr. Webster Cash, University of Colorado, Boulder, Colo.)

? Efficient Direct Conversion of Sunlight to Coherent Light at High Average Power in Space (PI: Dr. Richard Fork, University of Alabama, Huntsville, Ala.)

? Use of Superconducting Magnet Technology for Astronaut Radiation Protection (PI: Dr. Jeffrey Hoffman, Massachusetts Institute of Technology, Boston)

? Wide-Bandwidth Deep-Space Quantum Communications (PI: Ricky Morgan, Morgan Optics Corporation, San Diego)

? Lunar Space Elevators for Cislunar Space Development (PI: Jerome Pearson, Star Technology and Research, Inc., Mount Pleasant, S.C.)

? Large-Product General-Purpose Design and Manufacturing Using Nanoscale Modules (PI: Chris Phoenix, Center for Responsible Nanotechnology, Brooklyn, N.Y.)

? Magnetized Beamed Plasma Propulsion (PI: Dr. Robert M. Winglee of the University of Washington, Seattle)

? A Self-Sustaining, Boundary-Layer-Adapted System for Terrain Exploration and Environmental Sampling (PI: Dr. Craig A. Woolsey, Virginia Polytechnic Institute and State University, Blacksburg, Va.)

Original Source: NASA News Release

Toutatis Safely Passes the Earth

Today, September 29, 2004, is undisputedly the Day of Toutatis, the famous “doomsday” asteroid.

Not since the year 1353 did this impressive “space rock” pass so close by the Earth as it does today. Visible as a fast-moving faint point of light in the southern skies, it approaches the Earth to within 1,550,000 km, or just four times the distance of the Moon.

Closely watched by astronomers since its discovery in January 1989, this asteroid has been found to move in an orbit that brings it close to the Earth at regular intervals, about once every four years. This happened in 1992, 1996, 2000 and now again in 2004.

Radar observations during these passages have shown that Toutatis has an elongated shape, measuring about 4.6 x 2.4 x 1.9 km. It tumbles slowly through space, with a rotation period of 5.4 days.

The above images of Toutatis were taken with the ESO Very Large Telescope (during a technical test) in the evening of September 28. They were obtained just over 12 hours before the closest approach that happens today at about 15:40 hrs Central European Summer Time (CEST), or 13:40 hrs Universal Time (UT). At the time of these observations, Toutatis was about 1,640,000 km from the Earth, moving with a speed of about 11 km/sec relative to our planet.

They show the asteroid as a fast-moving object of magnitude 10, about 40 times fainter than what can be perceived with the unaided, dark-adapted eye. They also prove that Toutatis is right on track, following exactly the predicted trajectory in space and passing the Earth at a safe distance, as foreseen.

Detailed calculations, taking into account all available observations of this celestial body, have shown that although Toutatis passes regularly near the Earth, today’s passage is the closest one for quite some time, at least until the year 2562. The ESO observations, obtained at a moment when Toutatis was very close to the Earth, will help to further refine the orbital calculations.

The “parallax effect” demonstrated!
Simultaneous images obtained with telescopes at ESO’s two observatories at La Silla and Paranal demonstrate the closeness of Toutatis to the Earth. As can be seen on the unique ESO PR Photo 28e/04 that combines two of the exposures from the two observatories, the sighting angle to Toutatis from the two observatories, 513 km km apart, is quite different. Astronomers refer to this effect as the “parallax”. The closer the object is, the larger is the effect, i.e., the larger will be the shift of the line-of-sight.

Interestingly, the measured angular distance in the sky of the beginnings (or the ends) of the two trails (about 40 arcsec), together with the known distance between the two observatories and the position of Toutatis in the sky at the moment of the exposures fully define the triangle “Paranal-Toutatis-La Silla” and thus allow to calculate the exact distance to the asteroid.

It is found to be very close to that predicted from the asteroid’s position in its orbit and that of the Earth at the moment of this unique observation, 1,607,900 km. This exceptional, simultaneous set of observations thus provides an independent measurement of Toutatis’ distance in space and, like the measured positions, a confirmation of its computed orbit.

More information about Toutatis is available at the dedicated webpage by the French discoverers and also at the specialised Near-Earth Objects – Dynamic Site.

Original Source: ESO News Release

Halfway There: SpaceShipOne Hits Space Again

Image credit: Scaled Composites
There was a short delay and then SpaceShipOne took off at 1411 UTC (7:11am PDT) cradled under the White Knight carrier aircraft. It carried SpaceShipOne to an altitude of nearly 14 km (46,000 ft) and then released it.

Pilot Mike Melvill ignited the rocket, pointed the spacecraft directly up and accelerated to Mach 3, reaching the edge of space just a few minutes later – 100 km (62.5 miles).

The flight didn’t go as smoothly as designer Burt Rutan had predicted, however. Shortly after igniting its hybrid rocket engine and heading up into space, SpaceShipOne went into a harrowing corkscrew roll, spinning more than 20 barrel rolls. Melvill cut the spacecraft’s engine 11 seconds before it would have turned off automatically and was able to get control again. Melvill noted, “we would have gone much higher.”

In order to win the $10 million X-Prize, competitors need to complete the trip to space twice in two weeks carrying the pilot and the weight of two passengers. Instead of carrying dead weight, SpaceShipOne was filled with personal objects from the employees of the companies that built it.

Their next flight is expected to happen on October 4 – the 47th anniversary of the launch of Sputnik.

After the flight, Burt Rutan presented financier Paul Allen with tiny pine trees that had been carried into space. Rutan’s company has invested more than $20 million into SpaceShipOne, and recently inked a deal with Sir Richard Branson’s Virgin Galactic to develop a larger version of the prototype that could carry 5 paying passengers into space; it could start flying within a few years.

Written by Fraser Cain

Eat Like a Martian in Alaska

Image credit: ISECCo
Ray and some friends built Mars Base Zero a few years ago on a borrowed plot of land just outside Fairbanks, Alaska. It’s a fairly normal looking greenhouse 11 metres (36 feet) long, and two-thirds as wide. One half of the cylindrical roof is clear plastic, and the other half is well insulated. There’s also a small apartment attached to one end for Ray to live in while he tends to his Martian garden.

Inside you’ll find a healthy crop of potatoes, carrots, cabbage, tomatoes, and plenty of other produce to make a vegan smile – mostly, though, you’ll find potatoes. Through several years of experimentation, Ray has learned that a single human requires about 80 square metres (864 square feet) of soil to grow enough food to survive.

Assuming you’re willing to eat a lot of potatoes.

“We tried growing wheat, but we could have gotten several pounds of potatoes for an area that gave me just a cupful of wheat. I’m guessing that 4-5 chickens would eat the same amount as me. We might try fish, though.”

Collins is one of the original co-founders of the International Space Exploration and Colonization Co. (ISECCo); a non-profit organization hoping to contribute knowledge to the human exploration of space. Instead of building rockets in their garages, the ISECCo team decided to do something much lower budget: Closed Ecological Life Support System Research. Sort of like Biosphere II, but without all the fancy ecosystems… and drama.

They started in 1988, and built a series of experiments leading up to Mars Base Zero – a $30,000 investment. Maintaining the experiment has only cost $900 this year, since they planted the crops in May 2004. Ray figures he’s put $40,000 of his own money into the various experiments since 1988.

The only purpose of Mars Base Zero is to understand how much space is required, and which crops to grow to keep an astronaut well fed. If you could seal it up tight, and ship it to Mars, Ray figures that it would get enough sunlight on Mars to have the plants nearly growing as well as they do in Alaska.

Ray began this experiment on September 17, and he’s been keeping a detailed log of the food he’s been eating – the potatoes he’s been eating – and the, um, “waste” he’s been generating. He hasn’t lost any weight so far, but he has to eat several kilograms of food every day just to maintain. A nutritionist probably wouldn’t be too pleased with his diet so far, but Ray’s aware of the inadequacies and has new crops planned for next time around. If everything goes well, he’ll stay in for at least 30 days, and maybe as long as 60 days if the potatoes hold out. His wife is expecting to deliver their second child in December, so Ray’s got a hard deadline anyway.

Normally they plant in the spring, and then harvest in the fall. But Ray would like to try planting continuously, and keep it going as long into the winter as he can afford to pay for lights and heat. Eventually he hopes they’ll get to the point that it’s a year round operation.

And then they’ll take the experiment to the next level… underground.

ISECCo plans to build an underground dome, called Nauvik (Eskimo term for “nurturing place”), twice the same area as the greenhouse, but seal it completely off from the Earth’s environment. Water, air and other nutrients would be carefully monitored, and the plants would be grown by powerful lamps – the electricity bill alone will probably run $5,000 a month. The advantage is that they could simulate a lunar or Martian environment; even experimenting with different air pressures to see how the plants react. With the heat from the lamps, Ray expects one of the most difficult challenges will be keeping it cool.

It’ll be an expensive proposition. Especially without government or NASA funding. “We responded to a NASA request-for-proposal that was looking for unique ideas in closed system life support.” Ironically, the agency complained that their idea was “too unique”.

Maybe the astronauts weren’t willing to eat that many potatoes.

Written by Fraser Cain

Book Review: Leaving Earth

The Soviet Union began by vouching for human habitation once they had lost the race to the moon. Patsayev, Dobrovolsky and Volkov occupied the first Salyut which was the first manned orbital space station. During their three weeks in this small metal tube like craft they kept busy with adapting to a climate and facility created by ground-based designers who had no real appreciation of weightlessness. These cosmonauts succeeded in performing nonetheless with one highlight being the growth of many plants from a variety of seeds. By sticking to a rigid and very busy schedule of work, exercise and maintenance, they added significant insight into living in space for long durations. Sadly though this didn’t come freely for the Soviet Union as the cosmonauts tragically died while descending in their re-entry capsule.

Skylab was the USA’s response to Salyut. This behemoth, launched via the last Saturn V rocket system, provided over 12700 cubic feet of living space. This was a veritable mansion as compared to the Soviet Union’s Salyut. Here Conrad, Kerwin and Weitz completed a four week tour that was as much for repair and reconstruction as it was for scientific experiments. In a ‘we can fix anything’ mentality, they unstuck a solar panel, unpacked equipment and set up experiments. Surprisingly, they experienced no space sickness, just like the first Soviets, though this turned out
to be very rare.

In Salyut 4 Grechko and Gubarev, had brought seeds, amoebas, tadpoles, fish and flies to share their living quarters in Salyut 4. After 30 days of scientific experiments, observation and maintenance activity, they successfully returned to Earth. This was the Soviet Union’s first success in manned station return. With Salyut 6 the Soviet Union launched over eighteen different manned missions during its almost five years of operation. Residents stayed for over six months with a complement, at times, of up to four people. The Salyut 7 and Mir missions built upon the Soviet Union’s successes. Space flight durations were extended. Equipment was better designed, while experiments provided more insight on how the human body reacts to extended times in space. The cosmonauts learned to focus and control their emotions to stay mentally and emotionally fit in such an unnatural situation. They could repair aged or broken equipment, recover from unexpected failures and add significant structural components. This time saw amazing progress but the end of the Soviet Union also spelt the end for Salyut’s and Mir’s roles of being stars for communism.

Nevertheless, political expediency still is keeping the space program alive. Russia deorbited Mir to save money. They then joined with the USA and other nations to pursue construction of the International Space Station (ISS). Though Russia was able to impart some of their hard earned knowledge the USA considered the contribution to be more a form of economic relief for the newly recreated state. From this it appears the political climates have almost changed places as the Russian space program, by necessity, is relying on capitalism for its very survival while the NASA bureaucracy appears to be more interested in keeping itself alive than in advancing the space program. Yet the ISS is in space and is contributing to our knowledge.

Though this book contains many of the technical issues of the designs of space stations as well as the sordid details of politics, its greatest provision is the human experiences that so richly embellish the story. You read of cosmonauts that try farming plants throughout the interior of their craft in efforts to yield a worthwhile harvest. There is a female fighter pilot/cosmonaut that ended up wearing a dress and being a hostess in space. Innumerable misses of docking craft demonstrate the riskiness of the whole affair. As well, the complete dependency on temperamental machinery constantly kept stark terror a scant distance away. Most of all though, the reader can see the triumph of human ingenuity and community where coming together is not just a convenience but a necessity.

There are many people who believe that Mars is the next step for the human race. Robert Zimmerman shares in the belief and in his book Leaving Earth he shows how the previous thirty years have given humankind an incredible wealth of knowledge on how to do this. Within it are many excellent descriptions of good designs and bad designs, heroic actions to save a mission and errors in judgement that nearly doom them. Yet the message comes through again and again, if we want to go to Mars we have shown we have the ability, we only need the will.

To read more reviews, or order the book online, visit Amazon.com.

Review by Mark Mortimer

Mars Rover Tracks Spotted From Space

NASA’s Mars Global Surveyor, starting its third mission extension this week after seven years of orbiting Mars, is using an innovative technique to capture pictures even sharper than most of the more than 170,000 it has already produced.

One dramatic example from the spacecraft’s Mars Orbiter Camera shows wheel tracks of NASA’s Mars Exploration Rover Spirit and the rover itself. Another tells scientists that no boulders bigger than about 1 to 2 meters (3 to 7 feet) are exposed in giant ripples created by a catastrophic flood.

Those examples are available online at http://www.msss.com/mars_images/moc/2004/09/27/ and http://mars.jpl.nasa.gov/mgs. In addition, about 24,000 newly catalogued images that Mars Global Surveyor took between October 2003 and March 2004 have been added to the Mars Orbiter Camera Image Gallery at http://www.msss.com/moc_gallery/. These include additional pictures of the Mars Exploration Rover sites seen from orbit.

“Over the past year and a half, the camera and spacecraft teams for Mars Global Surveyor have worked together to develop a technique that allows us to roll the entire spacecraft so that the camera can be scanned in a way that sees details at three times higher resolution than we normally get,” said Dr. Ken Edgett, staff scientist for Malin Space Science Systems, San Diego, Calif., which built and operates the Mars Orbiter Camera. The technique adjusts the rotation rate of the spacecraft to match the ground speed under the camera.

“The image motion compensation is tricky and the spacecraft does not always hit its target. However, when it does, the results can be spectacular,” Edgett said.

The Mars Orbiter Camera acquires the highest resolution images ever obtained from a Mars-orbiting spacecraft. During normal operating conditions, the smallest objects that can be resolved on the martian surface in these images are about 4 to 5 meters (13 to 16 feet) across. With the adjusted-rotation technique, called “compensated pitch and roll targeted observation,” objects as small as 1.5 meters (4.9 feet) can be seen in images from the same camera. Resolution capability of 1.4 meters (4.6 feet) per pixel is improved to one-half meter (1.6 feet) per pixel. Because the maneuvers are complex and the amount of data that can be acquired is limited, most images from the camera are still taken without using that technique.

Mars Global Surveyor began orbiting Mars on Sept. 12, 1997. After gradually adjusting the shape of its orbit, it began systematically mapping the planet in March 1999. The Mars Orbiter Camera’s narrow-angle camera has now examined nearly 4.5 percent of Mars’ surface, including extensive imaging of candidate and selected landing sites for surface missions. The Mars Orbiter Camera also includes a wide-angle camera that observes the entire planet daily.

“Mars Global Surveyor has been productive longer than any other spacecraft ever sent to Mars, since it surpassed Viking Lander 1’s longevity earlier this year and has returned more images than all past Mars missions combined,” said Tom Thorpe, project manager for Mars Global Surveyor at NASA’s Jet Propulsion Laboratory, Pasadena, Calif. The mission will complete its 25,000th mapping orbit on Oct. 11.

Principal goals for the orbiter’s latest mission extension, beginning Oct. 1, include continued weather monitoring to form a continuous set of observations with NASA’s next Mars mission, Mars Reconnaissance Orbiter, scheduled to reach the red planet in 2006; imaging of possible landing sites for the Phoenix 2007 Mars Scout lander and 2009 Mars Science Laboratory rover; continued mapping and analysis of key sedimentary-rock outcrop sites; and continued monitoring of changes on the surface due to wind and ice. Because the narrow-angle camera has imaged only a small fraction of the surface, new discoveries about surface features are likely to come at any time. The extension runs two years, through September 2006, with a budget of $7.5 million per year.

Dr. James Garvin, NASA’s chief scientist for Mars and the Moon, said, “Mars Global Surveyor continues to catalyze new science as it explores Mars at scales compatible with those that our Mars Exploration Rovers negotiate every day, and its extended mission will continue to set the stage for upcoming observations by the Mars Reconnaissance Orbiter.”

Additional information about Mars Global Surveyor is available online at: http://mars.jpl.nasa.gov/mgs/. In addition to semi-annual releases of large collections of archived pictures, the Mars Orbiter Camera team posts a new image daily and last year began soliciting public suggestions for camera targets on Mars. These materials can be viewed online at http://www.msss.com . For more information about NASA and other space science programs on the Internet, visit http://www.nasa.gov.

JPL, a division of the California Institute of Technology in Pasadena, manages the Mars Global Surveyor mission for NASA’s Science Mission Directorate, Washington, D.C. JPL’s industrial partner is Lockheed Martin Space Systems, Denver, which built and operates the spacecraft.

Original Source: NASA/JPL News Release

Here Come The Thirty Metre Telescopes

Thirty Metre Optical and Infrared ground-based telescopes should be seeing first light in about 2011, and be fully operational by 2015. Four such instruments are in the works, CalTech?s TMT, Gemini?s GSMT, Canada?s VLOT, and Europe?s ELT. With 100 times the speed of Hubble, and three times the resolution of the Keck instruments, these tools will help unlock some new keys to our understanding the cosmos.

Earth-based thirty-metre telescopes are being funded, and designed now. Caltech’s TMT project will undergo design reviews in 2006 and 2007 with full construction funding scheduled to be given by the Gordon and Betty Moore Foundation in July 2008. Gordon Moore [of Moore?s Law fame] was the founder of Intel. His foundation supplied a 17 million dollar grant to design the TMT in October 2003. In total the instrument is expected to cost about 800 million dollars.

Adaptive optics have proved a tremendous success, and are one reason that there will be no replacement for the Hubble telescope as a space based tool for covering the optical and near infrared part of the spectrum. These three instruments will be getting first light with some segments about the same time that the 6.5 metre James Webb Space Telescope will begin its science mission in 2011-2.

Robert Gilmozzi?s OverWhelmingly Large Telescope [OWL project] is also trying to get first light by 2015, but faces more financial and technical obstacles than the 30-meter instruments. If the OWL doesn?t get built in this go-around, similar designs will likely be used for the following decade.

These instruments will be able to perform many tasks that the current generation of instruments either can?t do, or would require prohibitive amounts of observing time to accomplish including the following:

  • Map the density and heavy element content of the intergalactic media from nearby to beyond z=1.5 by measuring the details absorption spectra of 100,000 QSOs.
  • Observe the galaxy formation process by studying the movement of ionized gas clouds from z=3 to 8. Note these instruments can discern sources as close as 150 parsecs apart at z=3.
  • Chart the distortion of images of background galaxies when looking through galactic clusters to map the presence of dark matter to an unprecedented level of detail.
  • Chart the star populations of nearby galaxies observing element abundances, and determining formation histories.
  • Observe planet formation around the nearest thousand new stars. This instrument will be able to resolve to 0.4AU when looking at objects 33 light-years away.
  • Detect and characterize mature planets around nearby stars.

Caltech just put up a job posting for an Observatory Scientist for the TMT project. The Thirty metre telescopes are on their way.

Written by John A. Cross

Toutatis Sneaks Past the Earth on Wednesday

Early Wednesday morning, a 5,500 million pound asteroid measuring 5 kilometers in length will pass very close to Earth.

An asteroid two to three times that diameter is credited with causing the extinction of 85 percent of the world’s species, including the dinosaurs, when it hit our planet 65 million years ago.

Luckily for us, asteroid Toutatis is only a tourist, and doesn’t plan to stop here. It will come within 1.5 million kilometers (960,000 miles) of Earth, or four times the Earth-moon distance. Toutatis is the largest asteroid to come that close in more than a century.

Many smaller asteroids often pass well inside the moon’s orbit. The Earth is also hit continually with tiny meteors that often become “shooting stars” as they harmlessly burn up in the atmosphere.

But if a rock the size of Toutatis hit, the atmosphere would do little more than slow it down a bit before it slammed to Earth. The impact would create a vast crater, and toss so much dust and vaporized minerals into the air the skies would darken. Seismic waves created by the explosion would generate tsunamis and earthquakes, and red-hot rocks falling back to Earth would ignite forest fires.

Toutatis, also known as asteroid 4179, is 4.6 kilometers (2.9 miles) long and 2.4 kilometers (1.5 miles) wide. Although Toutatis looks like a large peanut, radar images revealed it is actually composed of two rocks that are in close contact. One of the rocks is approximately twice as large as the other.

Toutatis has a strange rotation –instead of the spinning on a single axis, like the planets and most other asteroids do, Toutatis tumbles so erratically that its orientation with respect to the solar system never repeats.

“The vast majority of asteroids, and all the planets, spin about a single axis, like a football thrown in a perfect spiral,” says Scott Hudson of Washington State University, “but Toutatis tumbles like a flubbed pass.”

Toutatis’s four-year orbit around the sun is also eccentric, extending from just inside the Earth’s orbit to the main asteroid belt between Mars and Jupiter.

Astronomer Christian Pollas discovered Toutatis on January 4, 1989. Pollas spotted the asteroid on photographic plates taken by Alain Maury and Derral Mulholland, who had taken the photos while observing Jupiter’s satellites.

Toutatis flew close by Earth in 1992 and 1996, but it hasn’t come this near to us since 1353. The next time it will pass this close again will be in the year 2562. The asteroid’s orbit around the sun is so eccentric that it can’t be predicted with much certainty for more than a few hundred years in the future. Since researchers can’t say Toutatis will never hit Earth, it is currently listed as a Potentially Hazardous Asteroid.

There is a rumor circulating on the Internet that the asteroid will strike Earth during this 2004 flyby. However, astronomers have been tracking the path of Toutatis ever since it was discovered, and they are certain it will pass safely by Earth.

Throughout history, several asteroids have hit Earth. The solar system was cluttered with asteroids while the Earth was young, and the face of the moon and other dead planetary bodies shows how frequent such impacts were. Impacts by large rocks are much less frequent today, but they can still occur.

There are thought to be more than 300,000 nearby small asteroids (asteroids about 100 meters across). Such asteroids should statistically hit Earth once every few thousand years. The most recent such asteroid strike occurred in 1908, when an asteroid measuring about 60 meters in diameter hit Russia. The “Tunguska” bolide exploded in the atmosphere and flattened about 700 square miles of Siberian forest.

Large (1 kilometer or greater) asteroids are far more rare and infrequent. There are only about 1,100 nearby large asteroids, and they are predicted to strike the Earth every half million years or so. But when these asteroids strike, they can cause catastrophic changes in the global climate. Asteroids that cause mass extinctions are thought to be 10 kilometers or greater in diameter.

The Spaceguard Survey was established to track large asteroids and comets that might pose a direct threat to Earth. So far, the Spaceguard Survey has found about half of these NEOs, and they expect to find the majority of them by 2008.

Although Toutatis will be in the far southern sky when it is closest to Earth, the asteroid is expected to brighten a few days prior to a 10th magnitude point of light visible from the Northern Hemisphere. Sky-watchers should look for it near the bright star Delta Capricorni.

Toutatis won’t be visible to the naked eye, but binoculars should suffice for spotting it in the night sky. A telescope would provide the best viewing, because it would allow the viewer to detect the slow motion of Toutatis against the background stars.

Original Source: Astrobiology Magazine Article