Satellites Track Inland Water Levels From Space

A few NASA satellites designed to study heights of Earth’s ocean surfaces are now also coming in handy for tracking water levels of inland lakes and reservoirs.

When analysts at the United States Department of Agriculture (USDA) Foreign Agriculture Service (FAS) learned that NASA satellites could be used for measuring lake water heights, they saw a chance to get vital information for managing irrigation and forecasting crop production in out-of-the way places.

Since early this year, NASA has supplied the USDA with near-real time data on lake and reservoir heights from around the world. The USDA has posted this information on a web site that allows users with a computer and Internet to access it for their varied uses. Analysts who forecast crop production, scientists, in-country water and irrigation managers, those involved in fishing industries, and the general public have all been making use of the site.

NASA and the French space agency Le Centre National d?Etudes Spatiales (CNES) teamed up to design, build and launch the TOPEX/Poseidon and the Jason-1 satellites. These satellites were designed to study many aspects of the ocean. The TOPEX/Poseidon satellite, for example, orbits at a height of 1336 kilometers (830 miles) above Earth, and can measure the height of the ocean surface directly underneath the satellite with an accuracy of 4-5 centimeters (better than 2 inches). Jason-1 and TOPEX/Poseidon cover the global oceans every 10 days. With these capabilities, this technology is surprisingly valuable for looking at larger areas of inland water.

“The satellites were designed with oceanographic objectives in mind, so the fact that they can be used for lakes and rivers are an added bonus,” said Charon Birkett, a University of Maryland researcher based at NASA’s Goddard Space Flight Center in Greenbelt, Md. It was Birkett’s work with satellites and inland water sources that caught the USDA’s interest.

Water level data for many lakes can be hard to get. Lakes may be located within inhospitable regions. Terrain may make it hard to install water level gauges, or some countries may not have the money for proper equipment. Even if there is equipment, someone must be available to regularly record the measurements. For an international agency like the USDA FAS, information on water levels in remote lakes in Africa or Asia, for example, may only be possible if a researcher happens to be passing by the area.

“Now we have this dataset which gives you a global picture of irrigation capabilities,” said Brad Doorn, Remote Sensing Technical Coordinator for the FAS. “It’s very much a night and day perspective as it relates to global irrigation potential.”

NASA/CNES satellites fly over 350 of the world’s largest lakes. The USDA decided to focus on about 150 of those that are important for agriculture. Of those, about 70 are currently online, with more being regularly added as Birkett and co-worker, Brian Beckley, from Raytheon’s Information Technology and Scientific Services (ITSS) team learn to extract information on the smaller lakes. Fifteen of the lakes that are currently online are in Africa.

The records begin with archived data from TOPEX/Poseidon, launched in 1992. They continued with data from the Jason-1 satellite, launched in December 2001. The two stayed in the same orbit for about 7 months, before the TOPEX/Poseidon satellite’s orbit was changed. These months of cross-over data were crucial for validating each of the satellites and for making sure the data records from Jason-1 were compatible with the TOPEX/Poseidon archive.

The information provided by the satellites, and made public through the web site, is a blessing to those who manage water for irrigation. Irrigated areas generally have less rainfall, and therefore crops in these drier regions are dependent on stores of water, like lakes, reservoirs and rivers.

The FAS analyzes crop production around the world. They regularly use computer models that simulate agricultural production based on inputs that include weather information. In this way they can examine global crop conditions and production. But in irrigated areas that are not rain fed, these methods are limited. For irrigated areas, you have to be able to determine how much water is actually stored, after seasonal precipitation passes.

“Satellite records of lake and reservoir water levels give you a good indication of whether there is going to be a systematic or major problem in water supply,” said Doorn. “If water is low, there may be problems for agricultural production.” This type of information is especially important for food aid partners, who must budget ahead for how much and where food aid is distributed.

Lake Tharthar in Central Iraq provides irrigation water to areas downstream. It is also linked to the Tigris and Euphrates Rivers. A drought that carried over many years severely cut grain output between 1999 and 2001. But since then, rainfall has increased, allowing grain production to recover and even surpass pre-drought levels. Knowledge of water levels in a region like this is crucial for the people who divvy out water for irrigation, and for those who plan aid.

The satellites have noticed some striking changes in lake levels around the world. In Iran, Lake Urmia has steadily decreased over the last 5 years. Also, between 1999 and 2001, Lake Hamoun in Iran near the Afghanistan border all but dried up and disappeared. By May 2003, water had returned to the lake. In that same time period, Lake Michigan levels have also declined.

On the other hand, when there is plenty of water, irrigation managers and farmers can assess the potential for more agriculture. When Caspian Sea levels rose in 1994, spill-over created a reservoir where little water existed before. As a result, the Kara Bogaz reservoir that borders the Caspian Sea was once largely desert and is now a large inland water body. Lake Nasser in Egypt also exists in a desert area where water supplies have increased.

As can be seen, the new technology allows researchers to get water level records regularly, globally, and in places where it is very hard to maintain or even acquire measurements. At the same time, there are also some limitations to the technology. For example, lake elevations can only be obtained during the lifetime of the satellite mission. Also, a satellite must pass directly over a lake for the radar to record water heights. But since the primary mission of these satellites is for studying the oceans, the fixed satellite orbit is determined by the community of oceanographers. That means people studying inland water have less input into the lakes that are monitored. In addition, some water bodies are simply too small for the instruments to pick up. These factors limit the number of observable lakes. “Sometimes, the lake that you want information about is the one you can’t get,” said Doorn.

Despite the current limitations, users like the FAS are thrilled to have access to the technology. Their web site provides new measurements to the public about a week to ten days after the satellite passes over.

“When USDA approached us, we told them the satellite record is not as accurate as a gauge sitting in a lake, but we can get good information within one to two weeks for many lakes in data-poor regions such as Africa and Asia,” said Birkett.

“It’s been a great USDA and NASA cooperative effort,” said Doorn. “It’s exactly what we needed and the type of cooperation provided has made it a real win-win situation.”

The project has been a collaborative effort between the NASA GSFC, USDA FAS, the University of Maryland, and Raytheon ITSS. The project was funded by the USDA/FAS.

Original Source: NASA News Release

3D Screensaver of Mars

I know you all like pretty pictures on your desktop, so here’s something that’ll help fill your bottomless need for photos. The European Space Agency releases screensavers from time to time filled with photos taken by their spacecraft. This one’s a little different, though, it’s a screensaver that displays 3D images. In order to properly see the perspective in the photo, you need a pair of those 3D glasses… you know the paper ones with a red and blue lens that you can get at 3D movies or with some books.

Download the screensaver. – 1.4 MB

It’s actually a good idea for you to keep a pair of these glasses on hand by your computer. Mars Express, Spirit and Opportunity can take pictures in stereo, so you can see a 3D view of what the Red Planet really looks like. You should be able to find a pair of glasses at your local bookstore. And here’s a website that’s giving away free 3D glasses.

Have fun,

Fraser Cain
Publisher
Universe Today

Recent Launch Demonstrates NASA Radar System

Radar tracking data gathered during the Delta II launch of the MESSENGER spacecraft earlier this month has provided promising results that may benefit NASA’s Space Shuttle Program and Discovery’s Return to Flight.

A pair of radars installed at NASA’s Kennedy Space Center, Fla., at a site north of Haulover Canal tracked the launch phase of the Delta II, including separation of the nine solid rocket boosters and jettison of the first stage and the payload fairing, the “nose” of the rocket that protected the MESSENGER spacecraft during launch.

“This test was quite successful for us in proving a concept,” said NASA project manager Tony Griffith. “The use of high-resolution wide band and Doppler radars allows us to observe almost any possible debris during ascent and means we can observe the Space Shuttle without regard to limitations of visibility, cloud cover and darkness.”

More importantly, the tandem radars “saw” — in significant detail — ice shedding from the Delta first stage, ejection of the solid rocket booster nozzle throat plugs, and contents of their exhaust. These are normal Delta launch events. For the Space Shuttle Program, the test showed that the radars, working together, were effective in visualizing the vehicle elements in high resolution and the ability to attain speedy interpretation of the images for initial data analysis after a Shuttle launch.

The antennas have been on loan to NASA from the USNS Pathfinder, a U.S. Navy instrumentation ship. The 30-foot-diameter C-band wideband radar antenna and the smaller X-band Doppler radar worked together to image the Delta in flight. The Navy operated the radars for NASA during the MESSENGER launch. NASA was responsible for analyzing the imagery.

“This turned out to be a successful and mutually beneficial partnership with the Navy that we will pursue,” Griffith said.

Later this fall, a 50-foot-diameter C-band wide band radar will be installed on this site for a similar Return to Flight application and for use by the Navy. The radar is being relocated to KSC from the Roosevelt Roads Naval Station in Puerto Rico.

The radars used for the test are being returned to the USNS Pathfinder, though the C-band radar used in this test could return as a backup for Return to Flight, if available from the Navy. NASA is evaluating the procurement of two X-band Doppler radars for use on ships downrange, including one of the solid rocket booster retrieval ships.

Original Source: NASA News Release

Mars Odyssey Goes into Overtime

NASA’s Mars Odyssey orbiter begins working overtime today after completing a prime mission that discovered vast supplies of frozen water, ran a safety check for future astronauts, and mapped surface textures and minerals all over Mars, among other feats.

“Odyssey has accomplished all of its mission-success criteria,” said Dr. Philip Varghese, project manager for Odyssey at NASA’s Jet Propulsion Laboratory, Pasadena, Calif. The spacecraft has been examining Mars in detail since February 2002, more than a full Mars year of about 23 Earth months. NASA has approved an extended mission through September 2006.

“This extension gives us another martian year to build on what we have already learned,” said JPL’s Dr. Jeff Plaut, project scientist for Odyssey. “One goal is to look for climate change. During the prime mission we tracked dramatic seasonal changes, such as the comings and goings of polar ice, clouds and dust storms. Now, we have begun watching for year-to-year differences at the same time of year.”

The extension will also continue Odyssey’s support for other Mars missions. About 85 percent of images and other data from NASA’s twin Mars rovers, Spirit and Opportunity, have reached Earth via communications relay by Odyssey, which receives transmissions from both rovers every day. The orbiter helped analyze potential landing sites for the rovers and is doing the same for NASA’s Phoenix mission, scheduled to land on Mars in 2008. Plans call for Odyssey to aid NASA’s Mars Reconnaissance Orbiter, due to reach Mars in March 2006, by monitoring atmospheric conditions during months when the newly arrived orbiter uses calculated dips into the atmosphere to alter its orbit into the desired shape.

Odyssey was launched April 7, 2001, and used the same dips into the atmosphere, known as aerobraking, to shape its orbit during the initial months after it reached Mars on Oct. 23, 2001. The spacecraft carries three research systems: a camera system made up of infrared and visible-light sensors; a spectrometer suite with a gamma ray spectrometer, a neutron spectrometer and a high-energy neutron detector; and a radiation environment detector.

Less than a month after the science mapping campaign began, the team announced a major discovery. The gamma ray and neutron instruments detected copious hydrogen just under Mars’ surface in the planet’s south polar region. Researchers interpret the hydrogen as frozen water — enough within about a meter (3 feet) of the surface, if the ice were melted, to fill Lake Michigan a couple times.

Here are a few of Odyssey’s other important accomplishments so far:

— As summer came to northern Mars and the north polar covering of frozen carbon dioxide shrank, Odyssey found abundant frozen water in the north, too.

— Infrared mapping showed that a mineral called olivine is widespread. This indicated the environment has been quite dry, because water exposure alters olivine into other minerals.

— Findings indicated the amount of frozen water in some relatively warm regions on Mars is too great to be in equilibrium with the atmosphere, suggesting that Mars may be going through a period of climate change. Features visible near small, young gullies in some Odyssey images may be slowly melting snowpacks left over from a martian ice age.

— The first experiment sent to Mars specifically in preparation for human missions found that radiation levels around Mars, from solar flares and cosmic rays, are two to three times higher than around Earth.

— Odyssey’s camera system obtained the most detailed complete global maps of Mars ever, with daytime and nighttime infrared images at a resolution of 100 meters (328 feet).

“We’ve accomplished everything we set out to do, and more,” said JPL’s Robert Mase, Odyssey mission manager. Although an unusually powerful solar flare in October 2003 knocked out the radiation environment instrument, Odyssey is otherwise in excellent health. The spacecraft has enough fuel onboard to keep operating through this decade and the next at current consumption rates. The mission extension, with a budget of $35 million, essentially doubles the science payoff from Odyssey for less than one-eighth of the mission’s original $297 million cost.

JPL, a division of the California Institute of Technology, Pasadena, manages Mars Odyssey for NASA’s Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, built and operates the spacecraft. Investigators at Arizona State University, Tempe; University of Arizona, Tucson; NASA’s Johnson Space Center, Houston; the Russian Aviation and Space Agency, Moscow; and Los Alamos National Laboratory, Los Alamos, N.M., built and operate Odyssey science instruments. For more information about Mars Odyssey on the Internet, visit: http://mars.jpl.nasa.gov/odyssey.

Original Source: NASA/JPL News Release

Beagle 2 Report Released

The UK-built Beagle 2 lander should have been on the surface of Mars, communicating with Earth for months now. But for some reason, shortly after it entered the Martian atmosphere, the small lander went silent, and it hasn’t been heard from since. Several inquiries have already been held, but now the mission operations team has released its own report to try and explain what could have gone wrong. The report provides a thorough list of ways the lander could have failed mechanically, but suggests that it was mostly likely that it failed during the entry, descent, and landing phase; probably because the atmosphere was less dense than the designers were expecting.

Smallest Extrasolar Planet Found

A European team of astronomers [1] has discovered the lightest known planet orbiting a star other than the sun (an “exoplanet”).

The new exoplanet orbits the bright star mu Arae located in the southern Altar constellation. It is the second planet discovered around this star and completes a full revolution in 9.5 days.

With a mass of only 14 times the mass of the Earth, the new planet lies at the threshold of the largest possible rocky planets, making it a possible super Earth-like object. Uranus, the smallest of the giant planets of the Solar System has a similar mass. However Uranus and the new exoplanet differ so much by their distance from the host star that their formation and structure are likely to be very different.

This discovery was made possible by the unprecedented accuracy of the HARPS spectrograph on ESO’s 3.6-m telescope at La Silla, which allows radial velocities to be measured with a precision better than 1 m/s. It is another clear demonstration of the European leadership in the field of exoplanet research.

A unique planet hunting machine
Since the first detection in 1995 of a planet around the star 51 Peg by Michel Mayor and Didier Queloz from the Geneva Observatory (Switzerland), astronomers have learned that our Solar System is not unique, as more than 120 giant planets orbiting other stars were discovered mostly by radial-velocity surveys (cf. ESO PR 13/00, ESO PR 07/01, and ESO PR 03/03).

This fundamental observational method is based on the detection of variations in the velocity of the central star, due to the changing direction of the gravitational pull from an (unseen) exoplanet as it orbits the star. The evaluation of the measured velocity variations allows to deduce the planet’s orbit, in particular the period and the distance from the star, as well as a minimum mass [2].

The continued quest for exoplanets requires better and better instrumentation. In this context, ESO undoubtedly took the leadership with the new HARPS spectrograph (High Accuracy Radial Velocity Planet Searcher) of the 3.6-m telescope at the ESO La Silla Observatory (see ESO PR 06/03). Offered in October 2003 to the research community in the ESO member countries, this unique instrument is optimized to detect planets in orbit around other stars (“exoplanets”) by means of accurate (radial) velocity measurements with an unequalled precision of 1 metre per second.

HARPS was built by a European Consortium [3] in collaboration with ESO. Already from the beginning of its operation, it has demonstrated its very high efficiency. By comparison with CORALIE, another well known planet-hunting optimized spectrograph installed on the Swiss-Euler 1.2-m telescope at La Silla (cf ESO PR 18/98, 12/99, 13/00), the typical observation times have been reduced by a factor one hundred and the accuracy of the measurements has been increased by a factor ten.

These improvements have opened new perspectives in the search for extra-solar planets and have set new standards in terms of instrumental precision.

The planetary system around mu Arae
The star mu Arae is about 50 light years away. This solar-like star is located in the southern constellation Ara (the Altar) and is bright enough (5th magnitude) to be observed with the unaided eye.

Mu Arae was already known to harbour a Jupiter-sized planet with a 650 days orbital period. Previous observations also hinted at the presence of another companion (a planet or a star) much further away.

The new measurements obtained by the astronomers on this object, combined with data from other teams confirm this picture. But as Fran?ois Bouchy, member of the team, states: “Not only did the new HARPS measurements confirm what we previously believed to know about this star but they also showed that an additional planet on short orbit was present. And this new planet appears to be the smallest yet discovered around a star other than the sun. This makes mu Arae a very exciting planetary system.”

During 8 nights in June 2004, mu Arae was repeatedly observed and its radial velocity measured by HARPS to obtain information on the interior of the star. This so-called astero-seismology technique (see ESO PR 15/01) studies the small acoustic waves which make the surface of the star periodically pulsate in and out. By knowing the internal structure of the star, the astronomers aimed at understanding the origin of the unusual amount of heavy elements observed in its stellar atmosphere. This unusual chemical composition could provide unique information to the planet formation history.

Says Nuno Santos, another member of the team: “To our surprise, the analysis of the new measurements revealed a radial velocity variation with a period of 9.5 days on top of the acoustic oscillation signal!”

This discovery has been made possible thanks to the large number of measurements obtained during the astero-seimology campaign.

From this date, the star, that was also part of the HARPS consortium survey programme, was regularly monitored with a careful observation strategy to reduce the “seismic noise” of the star.

These new data confirmed both the amplitude and the periodicity of the radial velocity variations found during the 8 nights in June. The astronomers were left with only one convincing explanation to this periodic signal: a second planet orbits mu Arae and accomplishes a full revolution in 9.5 days.

But this was not the only surprise: from the radial velocity amplitude, that is the size of the wobble induced by the gravitational pull of the planet on the star, the astronomers derived a mass for the planet of only 14 times the mass of the Earth! This is about the mass of Uranus, the smallest of the giant planets in the solar system.

The newly found exoplanet therefore sets a new record in the smallest planet discovered around a solar type star.

At the boundary
The mass of this planet places it at the boundary between the very large earth-like (rocky) planets and giant planets.

As current planetary formation models are still far from being able to account for all the amazing diversity observed amongst the extrasolar planets discovered, astronomers can only speculate on the true nature of the present object. In the current paradigm of giant planet formation, a core is formed first through the accretion of solid “planetesimals”. Once this core reaches a critical mass, gas accumulates in a “runaway” fashion and the mass of the planet increases rapidly. In the present case, this later phase is unlikely to have happened for otherwise the planet would have become much more massive. Furthermore, recent models having shown that migration shortens the formation time, it is unlikely that the present object has migrated over large distances and remained of such small mass.

This object is therefore likely to be a planet with a rocky (not an icy) core surrounded by a small (of the order of a tenth of the total mass) gaseous envelope and would therefore qualify as a “super-Earth”.

Further Prospects
The HARPS consortium, led by Michel Mayor (Geneva Observatory, Switzerland), has been granted 100 observing nights per year during a 5-year period at the ESO 3.6-m telescope to perform one of the most ambitious systematic searches for exoplanets so far implemented worldwide. To this aim, the consortium repeatedly measures velocities of hundreds of stars that may harbour planetary systems.

The detection of this new light planet after less than 1 year of operation demonstrates the outstanding potential of HARPS for detecting rocky planets on short orbits. Further analysis shows that performances achieved with HARPS make possible the detection of big “telluric” planets with only a few times the mass of the Earth. Such a capability is a major improvement compared to past planet surveys. Detection of such rocky objects strengthens the interest of future transit detections from space with missions like COROT, Eddington and KEPLER that shall be able to measure their radius.

More information
The research described in this Press release has been submitted for publication to the leading astrophysical journal “Astronomy and Astrophysics”. A preprint is available as a postscript file at http://www.oal.ul.pt/~nuno/.

Notes
[1]: The team is composed of Nuno Santos (Centro de Astronomia e Astrofisica da Universidade de Lisboa, Portugal), Fran?ois Bouchy and Jean-Pierre Sivan (Laboratoire d’astrophysique de Marseille, France), Michel Mayor, Francesco Pepe, Didier Queloz, St?phane Udry, and Christophe Lovis (Observatoire de l’Universit? de Gen?ve, Switzerland), Sylvie Vauclair, Michael Bazot (Toulouse, France), Gaspare Lo Curto and Dominique Naef (ESO), Xavier Delfosse (LAOG, Grenoble, France), Willy Benz and Christoph Mordasini (Physikalisches Institut der Universit?t Bern, Switzerland), and Jean-Louis Bertaux (Service d’A?ronomie de Verri?re-le-Buisson, Paris, France).

[2] A fundamental limitation of the radial-velocity method is the unknown of the inclination of the planetary orbit that only allows the determination of a lower mass limit for the planet. However, statistical considerations indicate that in most cases, the true mass will not be much higher than this value. The mass units for the exoplanets used in this text are 1 Jupiter mass = 22 Uranus masses = 318 Earth masses; 1 Uranus mass = 14.5 Earth masses.

[3] HARPS has been designed and built by an international consortium of research institutes, led by the Observatoire de Gen?ve (Switzerland) and including Observatoire de Haute-Provence (France), Physikalisches Institut der Universit?t Bern (Switzerland), the Service d’Aeronomie (CNRS, France), as well as ESO La Silla and ESO Garching.

Original Source: ESO News Release

Meteorites Could Have Supplied the Earth with Phosphorus

Image credit: University of Arizona
University of Arizona scientists have discovered that meteorites, particularly iron meteorites, may have been critical to the evolution of life on Earth.

Their research shows that meteorites easily could have provided more phosphorus than naturally occurs on Earth — enough phosphorus to give rise to biomolecules which eventually assembled into living, replicating organisms.

Phosphorus is central to life. It forms the backbone of DNA and RNA because it connects these molecules’ genetic bases into long chains. It is vital to metabolism because it is linked with life’s fundamental fuel, adenosine triphosphate (ATP), the energy that powers growth and movement. And phosphorus is part of living architecture ? it is in the phospholipids that make up cell walls and in the bones of vertebrates.

“In terms of mass, phosphorus is the fifth most important biologic element, after carbon, hydrogen, oxygen, and nitrogen,” said Matthew A. Pasek, a doctoral candidate in UA’s planetary sciences department and Lunar and Planetary Laboratory.

But where terrestrial life got its phosphorus has been a mystery, he added.

Phosphorus is much rarer in nature than are hydrogen, oxygen, carbon, and nitrogen.

Pasek cites recent studies that show there’s approximately one phosphorus atom for every 2.8 million hydrogen atoms in the cosmos, every 49 million hydrogen atoms in the oceans, and every 203 hydrogen atoms in bacteria. Similarly, there’s a single phosphorus atom for every 1,400 oxygen atoms in the cosmos, every 25 million oxygen atoms in the oceans, and 72 oxygen atoms in bacteria. The numbers for carbon atoms and nitrogen atoms, respectively, per single phosphorus atom are 680 and 230 in the cosmos, 974 and 633 in the oceans, and 116 and 15 in bacteria.

“Because phosphorus is much rarer in the environment than in life, understanding the behavior of phosphorus on the early Earth gives clues to life’s orgin,” Pasek said.

The most common terrestrial form of the element is a mineral called apatite. When mixed with water, apatite releases only very small amounts of phosphate. Scientists have tried heating apatite to high temperatures, combining it with various strange, super-energetic compounds, even experimenting with phosphorous compounds unknown on Earth. This research hasn’t explained where life’s phosphorus comes from, Pasek noted.

Pasek began working with Dante Lauretta, UA assistant professor of planetary sciences, on the idea that meteorites are the source of living Earth’s phosphorus. The work was inspired by Lauretta’s earlier experiments that showed that phosphorus became concentrated at metal surfaces that corroded in the early solar system.

“This natural mechanism of phosphorus concentration in the presence of a known organic catalyst (such as iron-based metal) made me think that aqueous corrosion of meteoritic minerals could lead to the formation of important phosphorus-bearing biomolecules,” Lauretta said.

“Meteorites have several different minerals that contain phosphorus,” Pasek said. “The most important one, which we’ve worked with most recently, is iron-nickel phosphide, known as schreibersite.”

Schreibersite is a metallic compound that is extremely rare on Earth. But it is ubiquitous in meteorites, especially iron meteorites, which are peppered with schreibersite grains or slivered with pinkish-colored schreibersite veins.

Last April, Pasek, UA undergraduate Virginia Smith, and Lauretta mixed schriebersite with room-temperature, fresh, de-ionized water. They then analyzed the liquid mixture using NMR, nuclear magnetic resonance.

“We saw a whole slew of different phosphorus compounds being formed,” Pasek said. “One of the most interesting ones we found was P2-O7 (two phorphorus atoms with seven oxygen atoms), one of the more biochemically useful forms of phosphate, similar to what’s found in ATP.”

Previous experiments have formed P2-07, but at high temperature or under other extreme conditions, not by simply dissolving a mineral in room-temperature water, Pasek said.

“This allows us to somewhat constrain where the origins of life may have occurred,” he said. “If you are going to have phosphate-based life, it likely would have had to occur near a freshwater region where a meteorite had recently fallen. We can go so far, maybe, as to say it was an iron meteorite. Iron meteorites have from about 10 to 100 times as much schreibersite as do other meteorites.

“I think meteorites were critical for the evolution of life because of some of the minerals, especially the P2-07 compound, which is used in ATP, in photosynthesis, in forming new phosphate bonds with organics (carbon-containing compounds), and in a variety of other biochemical processes,” Pasek said.

“I think one of the most exciting aspects of this discovery is the fact that iron meteorites form by the process of planetesimal differentiation,” Lauretta said. That is, the building-blocks of planets, called planestesmals, form both a metallic core and a silicate mantle. Iron meteorites represent the metallic core, and other types of meteorites, called achondrites, represent the mantle.

“No one ever realized that such a critical stage in planetary evolution could be coupled to the origin of life,” he added. “This result constrains where, in our solar system and others, life could originate. It requires an asteroid belt where planetesimals can grow to a critical size ? around 500 kilometers in diameter ? and a mechanism to disrupt these bodies and deliver them to the inner solar system.”

Jupiter drives the delivery of planetesimals to our inner solar system, Lauretta said, thereby limiting the chances that outer solar system planets and moons will be supplied with the reactive forms of phosphorus used by biomolecules essential to terrestrial life.

Solar systems that lack a Jupiter-sized object that can perturb mineral-rich asteroids inward toward terrestrial planets also have dim prospects for developing life, Lauretta added.

Pasek is talking about the research today (Aug. 24) at the 228th American Chemical Society national meeting in Philadelphia. The work is funded by the NASA program, Astrobiology: Exobiology and Evolutionary Biology.

Original Source: UA News Release

Cassini Completes Orbital Maneuver

The Cassini spacecraft successfully completed a 51-minute engine burn that will raise its next closest approach distance to Saturn by nearly 300,000 kilometers (186,000 miles). The maneuver was necessary to keep the spacecraft from passing through the rings and to put it on target for its first close encounter with Saturn’s moon Titan on Oct. 26.

Mission controllers received confirmation of a successful burn at 11:15 a.m. Pacific Time today. The spacecraft is approaching the highest point in its first and largest orbit about Saturn. Its distance from the center of Saturn is about 9 million kilometers (5.6 million miles), and its speed just prior to today’s burn was 325 meters per second (727 miles per hour) relative to Saturn. That means it is nearly at a standstill compared to its speed of about 30,000 meters per second (67,000 miles per hour) at the completion of its orbit insertion burn on June 30.

“Saturn orbit insertion got us into orbit and this maneuver sets us up for the tour,” said Joel Signorelli, spacecraft system engineer for the Cassini-Huygens mission at NASA’s Jet Propulsion Laboratory, Pasadena, Calif.

The maneuver was the third longest engine burn for the Cassini spacecraft and the last planned pressurized burn in the four-year tour. The Saturn obit insertion burn was 97 minutes long, and the deep space maneuver in Dec. 1998 was 88 minutes long.

“The October 26 Titan encounter will be much closer than our last one. We’ll fly by Titan at an altitude of 1,200 kilometers (746 miles), ‘dipping our toe’ into its atmosphere,” said Signorelli. Cassini’s first Titan flyby on July 2 was from 340,000 kilometers (211,000 miles) away.

Over the next four years, the Cassini orbiter will execute 45 Titan flybys as close as approximately 950 kilometers (590 miles) from the moon. In January 2005, the European-built Huygens probe that is attached to Cassini will descend through Titan’s atmosphere to the surface.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini-Huygens mission for NASA’s Science Mission Directorate, Washington. JPL designed, developed and assembled the Cassini orbiter.

For the latest images and more information about the Cassini-Huygens mission, visit http://saturn.jpl.nasa.gov and http://www.nasa.gov/cassini.

Original Source: NASA/JPL News Release

Martian Crater With Dunes

This image, taken by the High Resolution Stereo Camera (HRSC) on board ESA’s Mars Express spacecraft, shows a Martian crater with a dune field on its floor.

The image was taken during orbit 427 in May 2004, and shows the crater with a dune field located in the north-western part of the Argyre Planitia crater basin.

The image is centred at Mars longitude 303? East and latitude 43? South. The image resolution is approximately 16.2 metres per pixel.

The crater is about 45 kilometres wide and 2 kilometres deep. In the north-eastern part of this crater, the complex dune field is 7 kilometres wide by 12 kilometres long.

In arid zones on Earth, these features are called ?barchanes?, which are dunes having an asymmetrical profile, with a gentle slope on the wind-facing side and a steep slope on the lee-side.

The dune field shown here suggests an easterly wind direction with its steeper western part. The composition of the dune material is not certain, but the dark sands could be of basaltic origin.

Original Source: ESA News Release

Small Telescope Finds a Huge Planet

Fifteen years ago, the largest telescopes in the world had yet to locate a planet orbiting another star. Today telescopes no larger than those available in department stores are proving capable of spotting previously unknown worlds. A newfound planet detected by a small, 4-inch-diameter telescope demonstrates that we are at the cusp of a new age of planet discovery. Soon, new worlds may be located at an accelerating pace, bringing the detection of the first Earth-sized world one step closer.

“This discovery demonstrates that even humble telescopes can make huge contributions to planet searches,” says Guillermo Torres of the Harvard-Smithsonian Center for Astrophysics (CfA), a co-author on the study.

This research study will be posted online at http://arxiv.org/abs/astro-ph/0408421 and will appear in an upcoming issue of The Astrophysical Journal Letters.

This is the very first extrasolar planet discovery made by a dedicated survey of many thousands of relatively bright stars in large regions of the sky. It was made using the Trans-Atlantic Exoplanet Survey (TrES), a network of small, relatively inexpensive telescopes designed to look specifically for planets orbiting bright stars. A team of scientists co-led by David Charbonneau (CfA/Caltech), Timothy Brown of the National Center for Atmospheric Research (NCAR) and Edward Dunham of Lowell Observatory developed the TrES network. Initial support for the TrES network came from NASA’s Jet Propulsion Laboratory and the California Institute of Technology.

“It took several Ph.D. scientists working full-time to develop the data analysis methods for this search program, but the equipment itself uses simple, off-the-shelf components,” says Charbonneau.

Although the small telescopes of the TrES network made the initial discovery, follow-up observations at other facilities were required. Observations at the W.M. Keck Observatory which, for the University of California, Caltech, and NASA, operates the world’s two largest telescopes in Hawaii, were particularly crucial in confirming the planet’s existence.

Planet Shadows
The newfound planet is a Jupiter-sized gas giant orbiting a star located about 500 light-years from the Earth in the constellation Lyra. This world circles its star every 3.03 days at a distance of only 4 million miles, much closer and faster than the planet Mercury in our solar system.

Astronomers used an innovative technique to discover this new world. It was found by the “transit method,” which looks for a dip in a star’s brightness when a planet crosses directly in front of the star and casts a shadow. A Jupiter-sized planet blocks only about 1/100th of the light from a Sun-like star, but that is enough to make it detectable.

To be successful, transit searches must examine many stars because we only see a transit if a planetary system is located nearly edge-on to our line of sight. A number of different transit searches currently are underway. Most examine limited areas of the sky and focus on fainter stars because they are more common, thereby increasing the chances of finding a transiting system. However the TrES network concentrates on searching brighter stars in larger swaths of the sky because planets orbiting bright stars are easier to study directly.

“All that we have to work with is the light that comes from the star,” says Brown. “It’s much harder to learn anything when the stars are faint.”

“It’s almost paradoxical that small telescopes are more efficient than the largest ones if you use the transit method, since we live in a time when astronomers already are planning 100-meter-diameter telescopes,” says lead author Roi Alonso of the Astrophysical Institute of the Canaries (IAC), who discovered the new planet.

Most known extrasolar planets were found using the “Doppler method,” which detects a planet’s gravitational effect on its star spectroscopically by breaking the star’s light into its component colors. However, the information that can be gleaned about a planet using the Doppler method is limited. For example, only a lower limit to the mass can be determined because the angle at which we view the system is unknown. A high-mass brown dwarf whose orbit is highly inclined to our line of sight produces the same signal as a low-mass planet that is nearly edge-on.

“When astronomers find a transiting planet, we know that its orbit is essentially edge-on, so we can calculate its exact mass. From the amount of light it blocks, we learn its physical size. In one instance, we’ve even been able to detect and study a giant planet’s atmosphere,” says Charbonneau.

Sorting Suspects
The TrES survey examined approximately 12,000 stars in 36 square degrees of the sky (an area half the size of the bowl of the Big Dipper). Roi Alonso, a graduate student of Brown’s, identified 16 possible candidates for planet transits. “The TrES survey gave us our initial line-up of suspects. Then, we had to make a lot of follow-up observations to eliminate the imposters,” says co-author Alessandro Sozzetti (University of Pittsburgh/CfA).

After compiling the list of candidates in late April, the researchers used telescopes at CfA’s Whipple Observatory in Arizona and Oak Ridge Observatory in Massachusetts to obtain additional photometric (brightness) observations, as well as spectroscopic observations that eliminated eclipsing binary stars.

In a matter of two month’s time, the team had zeroed in on the most promising candidate. High-resolution spectroscopic observations by Torres and Sozzetti using time provided by NASA on the 10-meter-diameter Keck I telescope in Hawaii clinched the case.

“Without this follow-up work the photometric surveys can’t tell which of their candidates are actually planets. The proof of the pudding is an orbit for the parent star, and we got that using the Doppler method. That’s why the Keck observations of this star were so important in proving that we had found a true planetary system,” says co-author David Latham (CfA).

Remarkably Normal
The planet, called TrES-1, is much like Jupiter in mass and size (diameter). It is likely to be a gas giant composed primarily of hydrogen and helium, the most common elements in the Universe. But unlike Jupiter, it orbits very close to its star, giving it a temperature of around 1500 degrees F.

Astronomers are particularly interested in TrES-1 because its structure agrees so well with theory, in contrast to the first discovered transiting planet, HD 209458b. The latter world contains about the same mass as TrES-1, yet is around 30% larger in size. Even its proximity to its star and the accompanying heat don’t explain such a large size.

“Finding TrES-1 and seeing how normal it is makes us suspect that HD 209458b is an `oddball’ planet,” says Charbonneau.

TrES-1 orbits its star every 72 hours, placing it among a group of similar planets known as “hot Jupiters.” Such worlds likely formed much further away from their stars and then migrated inward, sweeping away any other planets in the process. The many planetary systems found to contain hot Jupiters indicate that our solar system may be unusual for its relatively quiet history.

Both the close orbit of TrES-1 and its migration history make it unlikely to possess any moons or rings. Nevertheless, astronomers will continue to examine this system closely because precise photometric observations may detect moons or rings if they exist. In addition, detailed spectroscopic observations may give clues to the presence and composition of the planet’s atmosphere.

The paper describing these results is authored by: Roi Alonso (IAC); Timothy M. Brown (NCAR); Guillermo Torres and David W. Latham (CfA); Alessandro Sozzetti (University of Pittsburgh/CfA); Georgi Mandushev (Lowell), Juan A. Belmonte (IAC); David Charbonneau (CfA/Caltech); Hans J. Deeg (IAC); Edward W. Dunham (Lowell); Francis T. O’Donovan (Caltech); and Robert Stefanik (CfA).

This joint announcement is being issued simultaneously by CfA, IAC, NCAR, the University of Pittsburgh, and Lowell Observatory.

The W.M. Keck Observatory is operated by the California Association for Research in Astronomy, a scientific partnership of the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration.

Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

Original Source: Harvard CfA News Release