Hotspot Found on Geminga

Astronomers using ESA?s X-ray observatory XMM-Newton have detected a small, bright ?hot spot? on the surface of the neutron star called Geminga, 500 light-years away. The hot spot is the size of a football field and is caused by the same mechanism producing Geminga?s X-ray tails. This discovery identifies the missing link between the X-ray and gamma-ray emission from Geminga.

Neutron stars are the smallest kind of stars known. They are the super-dense remnants of massive stars that died in cataclysmic explosions called supernovae. They have been thrown through space like cannonballs and set spinning at a furious rate, with magnetic fields hundreds of billions of times stronger than Earth?s.

In the case of Geminga, this cannonball contains one and a half times the mass of the Sun, squeezed into a sphere just 20 kilometres across and spinning four times every second.

A cloud bustling with electrically charged particles surrounds Geminga. These particles are shepherded by its magnetic and electric fields. ESA?s XMM-Newton observatory had already discovered that some of these particles are ejected into space, forming tails that stream behind the neutron star as it hurtles along.

Scientists did not know whether Geminga?s tails are formed by electrons or by their twin particles with an opposite electrical charge, called positrons. Nevertheless, they expected that, if for instance electrons are kicked into space, then the positrons should be funnelled down towards the neutron star itself, like in an ?own goal?. Where these particles strike the surface of the star, they ought to create a hot spot, a region considerably hotter than the surroundings.

An international team of astronomers, lead by Patrizia Caraveo, IASF-CNR, Italy, has now reported the detection of such a hot spot on Geminga using ESA?s XMM-Newton observatory.

With a temperature of about two million degrees, this hot spot is considerably hotter than the one half million degrees of the surrounding surface. According to this new work, Geminga?s hot spot is just 60 metres in radius.

“This hot spot is the size of a football field,” said Caraveo, “and is the smallest object ever detected outside of our Solar System.” Details of this size can presently be measured only on the Moon and Mars and, even then, only from a spacecraft in orbit around them.

The presence of a hot spot was suspected in the late 1990s but only now can we see it ?live?, emitting X-rays as Geminga rotates, thanks to the superior sensitivity of ESA?s X-ray observatory, XMM-Newton.

The team used the European Photon Imaging Cameras (EPIC) to conduct a study of Geminga, lasting about 28 consecutive hours and recording the arrival time and energy of every X-ray photon that Geminga emitted within XMM-Newton?s grasp.

“In total, this amounted to 76 850 X-ray counts ? twice as many as have been collected by all previous observations of Geminga, since the time of the Roman Empire,” said Caraveo.

Knowing the rotation rate of Geminga and the time of each photon?s arrival meant that astronomers could identify which photons were coming from each region of the neutron star as it rotates.

When they compared photons coming from different regions of the star, they found that the ?colour? of the X-rays, which corresponds to their energy, changed as Geminga rotated. In particular, they could clearly see a distinct colour change when the hot spot came into view and then disappeared behind the star.

This research closes the gap between the X-ray and gamma-ray emission from neutron stars. XMM-Newton has shown that they both can originate through the same physical mechanism, namely the acceleration of charged particles in the magnetosphere of these degenerate stars.

“XMM-Newton?s Geminga observation has been particularly fruitful,” said Norbert Schartel, ESA?s Project Scientist for XMM-Newton. “Last year, it yielded the discovery of the source tails and now it has found its rotating hot spot.”

Caraveo is already applying this new technique to other pulsating neutron stars observed by XMM-Newton looking for hot spots. This research represents an important new tool for understanding the physics of neutron stars.

Original Source: ESA News Release

Aura Finally Launches

Aura, a mission dedicated to the health of the Earth’s atmosphere, successfully launched today at 6:01:59 a.m. EDT (3:01:59 a.m. PDT) from Vandenberg Air Force Base, Calif., aboard a Boeing Delta II rocket. Spacecraft separation occurred at 7:06 a.m. EDT (4:06 a.m. PDT), inserting Aura into a 438-mile (705-kilometer) orbit.

NASA’s latest Earth-observing satellite, Aura will help us understand and protect the air we breathe.

“This moment marks a tremendous achievement for the NASA family and our international partners. We look forward to the Aura satellite offering us historic insight into the tough issues of global air quality, ozone recovery and climate change,” said NASA Associate Administrator for Earth Science Dr. Ghassem Asrar. “This mission advances NASA’s exploration of Earth and will also better our understanding of our neighbors in the planetary system. Aura joins its siblings, Terra, Aqua and 10 more research satellites developed and launched by NASA during the past decade, to study our home planet,” he added.

Aura will help answer three key scientific questions: Is the Earth’s protective ozone layer recovering? What are the processes controlling air quality? How is the Earth’s climate changing? NASA expects early scientific data from Aura within 30-90 days.

Aura also will help scientists understand how the composition of the atmosphere affects and responds to Earth’s changing climate. The results from this mission will help scientists better understand the processes that connect local and global air quality.

Each of Aura’s four instruments is designed to survey different aspects of Earth’s atmosphere. Aura will survey the atmosphere from the troposphere, where mankind lives, through the stratosphere, where the ozone layer resides and protects life on Earth.

With the launch of Aura, the first series of NASA’s Earth Observing System satellites is complete. The other satellites are Terra, which monitors land, and Aqua, which observes Earth’s water cycle.

Aura’s four instruments are: the High Resolution Dynamics Limb Sounder (HIRDLS); the Microwave Limb Sounder (MLS); the Ozone Monitoring Instrument (OMI); and the Tropospheric Emission Spectrometer (TES). HIRDLS was built by the United Kingdom and the United States. OMI was built by the Netherlands and Finland in collaboration with NASA. NASA’s Jet Propulsion Laboratory in Pasadena, Calif., constructed TES and MLS. NASA’s Goddard Space Flight Center, Greenbelt, Md., manages the Aura mission.

“Many people have worked very hard to reach this point and the entire team is very excited,” said Aura Project Manager Rick Pickering of Goddard.

NASA’s Earth Science Enterprise is dedicated to understanding the Earth as an integrated system and applying Earth System Science to improve prediction of climate, weather and natural hazards using the unique vantage point of space.

For Aura information and images on the Internet, visit:

http://www.gsfc.nasa.gov/topstory/2004/0517aura.html

and

http://www.nasa.gov/aura

Original Source: NASA News Release

Spirit’s Got a Bad Wheel

As winter approaches on Mars, NASA’s Opportunity rover continues to inch deeper into the stadium-sized crater dubbed “Endurance.” On the other side of the planet, the Spirit rover found an intriguing patch of rock outcrop while preparing to climb up the “Columbia Hills” backward. This unusual approach to driving is part of a creative plan to accommodate Spirit’s aging front wheel.

Spirit, with an odometer reading of over 3.5 kilometers (2.2 miles), has already traveled six times its designed capacity. Its right front wheel has been experiencing increased internal resistance, and recent efforts to mitigate the problem by redistributing the wheel’s lubricant through rest and heating have been only partially successful.

To cope with the condition, rover planners have devised a roundabout strategy. They will drive the rover backward on five wheels, rotating the sixth wheel only sparingly to ensure its availability for demanding terrain. “Driving may take us a little bit longer because it is like dragging an anchor,” said Joe Melko, a rover engineer at NASA’s Jet Propulsion Laboratory, Pasadena, Calif. “However, this approach will allow us to continue doing science much longer than we ever thought possible.”

On Thursday, July 15, Spirit successfully drove 8 meters (26 feet) north along the base of the Columbia Hills backward, dragging its faulty wheel. The wheel was activated about 10 percent of the time to surmount obstacles and to pull the rover out of trenches dug by the immobile wheel.

Along the way, Spirit drove over what scientists had been hoping to find in the hills — a slab of rock outcrop that may represent some of the oldest rocks observed in the mission so far. Spirit will continue to drive north, where it likely will encounter more outcrop. Ultimately, the rover will drive east and hike up the hills backward using all six wheels.

“A few months ago, we weren’t sure if we’d make it to the hills, and now here we are preparing to drive up into them,” said Dr. Matt Golombek, a rover science-team member from JPL. “It’s very exciting.”

For the past month, the Spirit rover has been parked near several hematite-containing rocks, including “Pot of Gold,” conducting science studies and undergoing a long-distance “tuneup” for its right front wheel.

Driving with the wheel disabled means that corrections might have to be made to the rover’s steering if it veers off its planned path. This limits Spirit’s accuracy, but rover planners working at JPL’s rover test facility have come up with some creative commands that allow the rover to auto-correct itself to a limited degree.

As Spirit prepares to climb upward, Opportunity is rolling downward. Probing increasingly deep layers of bedrock lining the walls of Endurance Crater at Meridiani Planum, the rover has observed a puzzling increase in the amount of chlorine. Data from Opportunity’s alpha particle X-ray spectrometer show that chlorine is the only element that dramatically rises with deepening layers, leaving scientists to wonder how it got there. “We do not know yet which element is bound to the chlorine,” said Dr. Jutta Zipfel, a rover science-team member from the Max Planck Institute for Chemistry, Mainz, Germany.

Opportunity will roll down even farther into the crater in the next few days to see if this trend continues. It also will investigate a row of sharp, teeth-like features dubbed “Razorback,” which may have formed when fluid flowed through cracks, depositing hard minerals. Scientists hope the new data will help put together the pieces of Meridiani’s mysterious and watery past. “Razorback may tell us more about the history of water at Endurance Crater,” said Dr. Jack Farmer, a rover science-team member from Arizona State University, Tempe.

Rover planners are also preparing for the coming Martian winter, which peaks in mid-September. Dwindling daily sunshine means the rovers will have less solar power and take longer to recharge. Periods of rest and “deep sleep” will allow the rovers to keep working through the winter at lower activity levels. Orienting the rovers’ solar panels toward the north will also elevate power supplies. “The rovers might work a little bit more every day, or a little bit more every other day. We will see how things go and remain flexible,” said Jim Erickson, project manager for the Mars Exploration Rover mission at JPL.

JPL, a division of the California Institute of Technology in Pasadena, manages the Mars Exploration Rover project for NASA’s Office of Space Science, Washington.

Images and additional information about the project are available on the Internet at http://marsrovers.jpl.nasa.gov and http://athena.cornell.edu

Original Source: NASA/JPL News Release

Saturn’s Two-Faced Moon

The moon with the split personality, Iapetus, presents a puzzling appearance. One hemisphere of the moon is very dark, while the other is very bright. Whether the moon is being coated by foreign material, or being resurfaced by material from within is not yet known.

At 1436 kilometers (892 miles across), Iapetus is about 2.5 times smaller than our own Moon.

The brightness variations in this image are real. The face of Iapetus visible here was observed at a Sun-Iapetus-spacecraft, or phase, angle of about 10 degrees.

The image was taken in visible light with the narrow angle camera on July 3, 2004, from a distance of 3 million kilometers (1.8 million miles) from Iapetus. The image scale is 18 kilometers (11 miles) per pixel. The image was magnified by a factor of two to aid visibility.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini-Huygens mission for NASA’s Office of Space Science, Washington, D.C. The imaging team is based at the Space Science Institute, Boulder, Colorado.

For more information about the Cassini-Huygens mission, visit http://saturn.jpl.nasa.gov and the Cassini imaging team home page, http://ciclops.org.

Original Source: CICLOPS News Release

Anik F2 Launched on Ariane 5

Telesat, one of the world?s leading satellite operators, announced today the successful launch of the Anik F2 – the world?s largest commercial communications satellite. Telesat?s Anik F2 also makes history as the first satellite to fully commercialize the Ka frequency band ? a breakthrough satellite communications technology for delivering cost-effective, two-way broadband services.

Telesat?s Anik F2 will enable dramatic improvements in access to two-way, high-speed Internet services for consumers and businesses. The satellite will also provide new capacity for a wide range of broadcasting and telecommunications services across North America.

?With Anik F2 we enter a new frontier in satellite communications ? not just for Telesat, but also for the global communications industry,? said Larry Boisvert, Telesat?s president and CEO. ?Once again, Telesat is making advanced communications more accessible for everyone. With Telesat?s Anik F2, North American consumers and businesses will have access to the most advanced broadband services ? anywhere and anytime.?

Anik F2 will be used in innovative ways for both commercial and public services. For example, the Canadian government can use Anik F2 to improve services to remote communities through tele-health, tele-learning and other applications.

Manufactured by Boeing Satellite Systems, Telesat?s Anik F2 was launched on an Ariane 5G rocket from Europe?s Spaceport in Kourou at 9:44 p.m. local time. Arianespace provided mission management. Anik F2 represents Telesat?s fifteenth successful satellite launch.

Telesat?s Anik F2 is equipped with 38 Ka-band transponders, 32 Ku-band transponders and 24 C-band transponders. The spacecraft has a launch mass of 5,950 kg (13,118 lb), a solar array span of 48 metres once deployed in orbit, and spacecraft power of 15 kw at end of life. The satellite, operating in geostationary orbit, will provide commercial services for an estimated 15 years.

Following in-orbit tests this summer and fall, Telesat will take possession of Anik F2 and begin commercial service in the fall.

Original Source: Telsat News Release

Saturn and Jupiter Formed Differently

Nearly five billion years ago, the giant gaseous planets Jupiter and Saturn formed, apparently in radically different ways.

So says a scientist at the University of California’s Los Alamos National Laboratory who created exhaustive computer models based on experiments in which the element hydrogen was shocked to pressures nearly as great as those found inside the two planets.

Working with a French colleague, Didier Saumon of Los Alamos’ Applied Physics Division created models establishing that heavy elements are concentrated in Saturn’s massive core, while those same elements are mixed throughout Jupiter, with very little or no central core at all. The study, published in this week’s Astrophysical Journal, showed that refractory elements such as iron, silicon, carbon, nitrogen and oxygen are concentrated in Saturn’s core, but are diffused in Jupiter, leading to a hypothesis that they were formed through different processes.

Saumon collected data from several recent shock compression experiments that have showed how hydrogen behaves at pressures a million times greater than atmospheric pressure, approaching those present in the gas giants. These experiments – performed over the past several years at U.S. national labs and in Russia – have for the first time permitted accurate measurements of the so-called equation of state of simple fluids, such as hydrogen, within the high-pressure and high-density realm where ionization occurs for deuterium, the isotope made of a hydrogen atom with an additional neutron.

Working with T. Guillot of the Observatoire de la Cote d’Azur, France, Saumon developed about 50,000 different models of the internal structures of the two giant gaseous planets that included every possible variation permitted by astrophysical observations and laboratory experiments.

“Some data from earlier planetary probes gave us indirect information about what takes place inside Saturn and Jupiter, and now we’re hoping to learn more from the Cassini mission that just arrived in Saturn’s orbit,” Saumon said. “We selected only the computer models that fit the planetary observations.”

Jupiter, Saturn and the other giant planets are made up of gases, like the sun: They are about 70 percent hydrogen by mass, with the rest mostly helium and small amounts of heavier elements. Therefore, their interior structures were hard to calculate because hydrogen’s equation of state at high pressures wasn’t well understood.

Saumon and Guillot constrained their computer models with data from the deuterium experiments, thereby reducing previous uncertainties for the equation of state of hydrogen, which is the central ingredient needed to improve models of the structures of the planets and how they formed.

“We tried to include every possible variation that might be allowed by the experimental data on shock compression of deuterium,” Saumon explained.

By estimating the total amount of the heavy elements and their distribution inside Jupiter and Saturn, the models provide a better picture of how the planets formed through the accretion of hydrogen, helium and solid elements from the nebula that swirled around the sun billions of years ago.

“There’s been general agreement that the cores of Saturn and Jupiter are different,” Saumon said. “What’s new here is how exhaustive these models are. We’ve managed to eliminate or quantify many of the uncertainties, so we have much better confidence in the range within which the actual data will fall for hydrogen, and therefore for the refractory metals and other elements.

“Although we can’t say our models are precise, we know quite well how imprecise they are,” he added.

These results from the models will help guide measurements to be taken by Cassini and future proposed interplanetary space probes to Jupiter.

Los Alamos National Laboratory is operated by the University of California for the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy and works in partnership with NNSA’s Sandia and Lawrence Livermore national laboratories to support NNSA in its mission.

Los Alamos develops and applies science and technology to ensure the safety and reliability of the U.S. nuclear deterrent; reduce the threat of weapons of mass destruction, proliferation and terrorism; and solve national problems in defense, energy, environment and infrastructure.

Original Source: Los Alamos News Release

New Plan to Move an Asteroid

On 9 July 2004, the Near-Earth Object Mission Advisory Panel recommended that ESA place a high priority on developing a mission to actually move an asteroid. The conclusion was based on the panel?s consideration of six near-Earth object mission studies submitted to the Agency in February 2003.

Of the six studies, three were space-based observatories for detecting NEOs and three were rendezvous missions. All addressed the growing realisation of the threat posed by Near-Earth Objects (NEOs) and proposed ways of detecting NEOs or discovering more about them from a close distance.

A panel of six experts, known as the Near-Earth Object Mission Advisory Panel (NEOMAP) assessed the proposals. Alan Harris, German Aerospace Centre (DLR), Berlin, and Chairman of NEOMAP, says, ?The task has been very difficult because the goalposts have changed. When the studies were commissioned, the discovery business was in no way as advanced as it is now. Today, a number of organisations are building large telescopes on Earth that promise to find a very large percentage of the NEO population at even smaller sizes than visible today.?

As a result, the panel decided that ESA should leave detection to ground-based telescopes for the time being, until the share of the remaining population not visible from the ground becomes better known. The need for a space-based observatory will then be re-assessed. The panel placed its highest priority on rendezvous missions, and in particular, the Don Quijote mission concept. ?If you think about the chain of events between detecting a hazardous object and doing something about it, there is one area in which we have no experience at all and that is in directly interacting with an asteroid, trying to alter its orbit,? explains Harris.

The Don Quijote mission concept will do this by using two spacecraft, Sancho and Hidalgo. Both are launched at the same time but Sancho takes a faster route. When it arrives at the target asteroid it will begin a seven-month campaign of observation and physical characterisation during which it will land penetrators and seismometers on the asteroid?s surface to understand its internal structure.

Sancho will then watch as Hidalgo arrives and smashes into the asteroid at very high speed. This will provide information about the behaviour of the internal structure of the asteroid during an impact event as well as excavating some of the interior for Sancho to observe. After the impact, Sancho and telescopes from Earth will monitor the asteroid to see how its orbit and rotation have been affected.

Harris says, ?When we do actually find a hazardous asteroid, you could imagine a Don Quijote-type mission as a precursor to a mitigation mission. It will tell us how the target responds to an impact and will help us to develop a much more effective mitigation mission.?

On 9 July, the findings were presented to the scientific and industrial community. Representatives of other national space agencies were also invited in the hope that they will be interested in developing a joint mission, based around this concept.

Andr?s Galvez, ESA?s Advanced Concepts Team and technical officer for the NEOMAP report says, ?This report gives us a solid foundation to define programmatic priorities and an implementation strategy, in which I also hope we are joined by international partners?.

With international cooperation, a mission could be launched as early as 2010-2015.

The six mission concepts studied were:

* Earthguard-1 ? a small space telescope for NEO discovery, especially the Atens and ?inner-Earth objects? (IEOs) that are difficult to detect from the ground.
* European Near-Earth Object Survey (EUNEOS) ? a space telescope for NEO discovery
* NEO Remote Observations (NERO) ? an optical/infrared space telescope for NEO discovery and physical characterisation.
* Smallsat Intercept Missions to Objects Near Earth (SIMONE) ? a flotilla of low-cost microsatellites for near-Earth asteroid rendezvous and in-situ remote sensing
* Internal Structure High-resolution Tomography by Asteroid Rendezvous (ISHTAR) ? uses radar tomography for an in-situ study of internal structure
* Don Quijote ? uses explosive charges, an impactor, seismic detectors and accelerometers for an in-situ study of internal structure and momentum transfer

Original Source: ESA News Release

Two Ecosystems in Antarctica’s Vostok?

Scientists from the Lamont-Doherty Earth Observatory (LDEO) at Columbia University and Rensselaer Polytechnic Institute in New York State have developed the first-ever map of water depth in Lake Vostok, which lies between 3,700 and 4,300 meters (more than 2 miles) below the continental Antarctic ice sheet. The new comprehensive measurements of the lake?roughly the size of North America’s Lake Ontario?indicate it is divided into two distinct basins that may have different water chemistry and other characteristics. The findings have important implications for the diversity of microbial life in Lake Vostok and provide a strategy for how scientists study the lake?s different ecosystems should international scientific consensus approve exploration of the pristine and ancient environment.

Michael Studinger, of the Lamont-Doherty Earth Observatory (LDEO) at Columbia University, said that the existence of two distinct regions with the lake would have significant implications for what sorts of ecosystems scientists should expect to find in the lake and how they should go about exploring them.

“The ridge between the two basins will limit water exchange between the two systems,” he said. “Consequently, the chemical and biological composition of these two ecosystems is likely to be different.”

The National Science Foundation (NSF), an independent federal agency that supports fundamental research and education across all fields of science and engineering, supported the work. NSF manages the U.S. Antarctic Program, which coordinates almost all U.S. science on the southernmost continent.

The new measurements are significant because they provide a comprehensive picture of the entire lakebed and indicate that the bottom of the lake contains a previously unknown, northern sub-basin separated from the southern lakebed by a prominent ridge.

Using laser altimeter, ice-penetrating radar and gravity measurements collected by aircraft, Studinger and Robin Bell, of LDEO, and Anahita Tikku, formerly of the University of Tokyo and now at Rensselaer Polytechnic Institute, estimate that Lake Vostok contains roughly 5400 cubic kilometers (1300 cubic miles) of water. Their measurements also indicate that the top of the ridge dividing the two basins is only 200 meters (650 feet) below the bottom of the icesheet. Elsewhere, the water ranges from roughly 400 meters (1,300 feet) deep in the northern basin to 800 meters (2,600 feet) deep in its southern counterpart.

Water that passes through the lake starts on one end as melted ice from the very bottom of the ice sheet, which refreezes at the other end. According to the new measurements, the base of the ice sheet melts predominantly over the smaller northern basin, while the water in the lake refreezes over the larger southern basin. The researchers assert that water takes between 55,000 and 110,000 years to cycle through the lake.

The arrangement of the two basins, their separation and the characteristics of the meltwater may, the scientists conclude, all have implications for the circulation of water within the lake. It is possible, for example, that if the water in the lake were fresh, meltwater in the northern basin would sink to the bottom of that basin, limiting the exchange of waters between the two basins. The meltwater in the adjacent basin likely would be different.

The two lake basins, they argue, could therefore have very different bottoms.

The scientists also point out that the waters of the two basins may, as a result of the separation, have a very different chemical and even biological composition. Indeed, Lake Vostok, is also of interest to those who search for microbial life elsewhere in the solar system. The lake is thought to be a very good terrestrial analog of the conditions on Europa, a frozen moon of Jupiter. If life can exist in Vostok, scientists have argued, then microbes also might thrive on Europa.

The new measurements also indicate that different strategies may be needed to target sampling of specific types of lake sediments. Those released from the ice sheet represent the rocks over which the ice traveled, for example, and would be more prominent in the northern basin. Material in the southern basin would be more likely to represent the environmental conditions before the ice sheet sealed off the lake.

Scientists deciding whether and how to proceed with an exploration of Lake Vostok say a great deal of technological development would likely be needed before a device could be deployed to conduct contamination-free sampling. Currently, no scientific sampling of the lake is being carried out.

The ultimate goal of any sampling would be to obtain water and sediment samples from the lake bottom.

The team published the new maps in the June 19 edition of Geophysical Research Letters, a publication of the American Geophysical Union.

Original Source: NSF News Release

Saturn’s Southern Atmosphere

Cassini captured intriguing cloud structures on Saturn as it neared its rendezvous with the gas giant. Notable is the irregularity in the eastern edge of the dark southern polar collar. The image was taken with the narrow angle camera on May 21, 2004, from a distance of 22 million kilometers (13.7 million miles) from Saturn through a filter sensitive to absorption and scattering of sunlight in the near infrared by methane gas (centered at 727 nanometers). The image scale is 131 kilometers (81 miles) per pixel. No contrast enhancement has been performed on this image.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini-Huygens mission for NASA’s Office of Space Science, Washington, D.C. The imaging team is based at the Space Science Institute, Boulder, Colorado.

For more information about the Cassini-Huygens mission, visit http://saturn.jpl.nasa.gov and the Cassini imaging team home page, http://ciclops.org.

The Search for More Earths

Until a decade ago, astronomers weren’t even sure there were any planets outside the Solar System. You’d be hard-pressed to find anyone who believed we had the only planets in the entire Universe, but we still didn’t have any direct evidence they existed. That all changed in October 5, 1995 when Michel Mayor and Didier Queloz announced they had discovered a planet half the mass of Jupiter orbiting furiously around a star called 51 Pegasi. The discoveries came fast; at last count, there are 122 confirmed extrasolar planets.

But these extrasolar systems generally look nothing like our own Solar System. Many contain massive planets which orbit extremely close to their parent star; no chance for life there. Planets roughly the size and orbit of Jupiter have been uncovered, but it’s impossible for the current technology to see anything the size of our own Earth.

Fortunately, there’s a series of ground and space-based observatories in the works that should be capable of detecting Earth-sized planets around other stars. NASA and the ESA are working towards the goal of being able to directly photograph these planets and measure the composition of their atmospheres. Find large amounts of oxygen, and you’ve found life.

Corot – 2006
The European Space Agency will be the first off the mark in the hunt for rocky planets with the launch of Corot in 2006. It’ll carefully monitor the brightness of stars, watching for a slight dimming that happens in regular intervals. These dimmings are called “transits”, and happen when a planet passes in between the Earth and a distant star. The concept of a “transit” should be fresh in your mind – Venus performed one recently on June 8, 2004. Corot will be sensitive enough to detect rocky planets as small as 10 times the size of the Earth.

A follow on mission, Eddington, was originally scheduled for launch in 2007, would have been able to spot planets half the size of the Earth. But it was recently canceled, unfortunately.

Kepler – 2007
The first space observatory designed to find Earth-sized planets in orbit around other stars will be Kepler, named after the German astronomer who devised the laws of planetary motion. It’s scheduled to launch in 2007, and will also use the transit method to detect planets.

Kepler has an extremely sensitive photometer hooked up to its one-metre telescope. It’ll monitor the brightness of hundreds of thousands of stars in a chunk of sky about the same size as your outstretched hand, and watch for that telltale periodic “dimming”.

Over the course of its four year mission, Kepler should discover plenty of objects orbiting other stars, and its photometer is just sensitive enough that it should notice an Earth-sized planet as it crosses in front of a star for a few hours.

Space Interferometry Mission – 2009
Next up will be the Space Interferometry Mission, due for launch in 2009. Once in space, the SIM will take up a position in orbit that trails the Earth as it goes around the Sun, slowly drifting further and further away – this’ll give it a good, stable view of the heavens, without having the Earth around to block the view.

The observatory is designed to measure the distance to stars with incredible precision. It’s so precise, that it should be able to spot a star being moved through the gravitational interaction with its planets. For example, if you looked at the position of our own Sun from a distant point, it would look like it’s wobbling around thanks to the gravity of Jupiter, Saturn, and even the Earth. SIM will be able to detect a star’s interactions with planets down to the size of a few times the mass of the Earth. That’s precise.

Terrestrial Planet Finder – 2012-2015
Unlike the previous missions, which will detect Earth-sized planets indirectly, the Terrestrial Planet Finder (TPF) will “see” them. It’s scheduled for launch in 2012 and will nullify the light from distant stars by a factor of 100,000 times, revealing their planets. The final design is still in the works, but it could end up being a group of spacecraft flying in close formation, merging their light together to form a much larger virtual space telescope.

The TPF will pick up where SIM leaves off, surveying the habitable zone of stars 50 light years away from the Earth. Not only will it be able to see Earth-sized planets in these zones, it’ll be able to analyze the composition of their atmospheres. Here’s the key: the TPF will be able to spot the presence of oxygen, water vapour, methane and carbon dioxide in Earth-sized planets in the habitable zone of other stars. If could find the fingerprint for life in the atmospheres of these planets.

Find life on other planets, and you can assume that it’s probably common throughout our Milky Way galaxy, and maybe even the entire Universe.

Darwin – 2014
Shortly after the TPF gets to work, the European Space Agency is planning to launch Darwin; a flotilla of 8 spacecraft working together to find Earth-sized planets and search for the chemical signatures of life. Darwin will be the most powerful space-based observatory, providing images 10-times more detailed than even the James Webb Space Telescope (due for launch 2009).

Stars are billions of times brighter than the planets that orbit them, so Darwin will solve this problem by observing in the infrared spectrum, where this difference is much smaller. It’ll also be capable of canceling out starlight to reveal the much dimmer planets.

Darwin is similar enough to the Terrestrial Planet Finder, that the two agencies are considering combining their designs into a single mission funded by both groups.

Maybe we aren’t alone after all.
In just a decade, and less than 20 years after the discovery of the first planets orbiting other stars, astronomers should be able to supply us with an answer to one of the most fundamental questions humans have asked themselves… are we alone? If the Terrestrial Planet Finder hasn’t turned up evidence of life yet, then the answer will still be, “not yet”. But there’s a chance that in 10 years, you’ll be reading news that that life has been discovered orbiting another star.

But that won’t be the end of it. The scientists will press on, with new equipment, observatories and techniques to search even deeper into space. And the philosophers and theologians will get to work considering our place in a very crowded Universe.