Slides on Olympus Mons

This image from ESA’s Mars Express show the western flank of the shield volcano Olympus Mons in the Tharsis region of the western Martian hemisphere.

The image was taken by the High Resolution Stereo Camera (HRSC) during orbit 143 from an altitude of 266 kilometres. It were taken with a resolution of about 25 metres per pixel and is centred at 222? East and 22? North. North is to the left.

The image shows the western part of the escarpment, rising from the surface level to over 7000 metres. In the foreground, part of the extensive plains west of the escarpment are shown, known as an ‘aureole’ (from the Latin for ‘circle of light’).

To the north and west of the volcano, these ‘aureole’ deposits are regions of gigantic ridges and blocks extending some 1000 kilometres from the summit like petals of a flower. An explanation for the origin of the deposits has challenged planetary scientists for decades.

The most persistent explanation, however, has been landslides. Large masses of shield material can be found in the aureole area. Several indications also suggest a development and resurfacing connected to glacial activity.

Original Source: ESA News Release

Closer, Dimmer Gamma Ray Burst Spotted

A gamma-ray burst detected by ESA’s Integral gamma-ray observatory on 3 December 2003 has been thoroughly studied for months by an armada of space and ground-based observatories. Astronomers have now concluded that this event, called GRB 031203, is the closest cosmic gamma-ray burst on record, but also the faintest. This also suggests that an entire population of sub-energetic gamma-ray bursts has so far gone unnoticed…

Cosmic gamma-ray bursts (GRBs) are flashes of gamma rays that can last from less than a second to a few minutes and occur at random positions in the sky. A large fraction of them is thought to result when a black hole is created from a dying star in a distant galaxy. Astronomers believe that a hot disc surrounding the black hole, made of gas and matter falling onto it, somehow emits an energetic beam parallel to the axis of rotation.

According to the simplest picture, all GRBs should emit similar amounts of gamma-ray energy. The fraction of it detected at Earth should then depend on the ‘width’ (opening angle) and orientation of the beam as well as on the distance. The energy received should be larger when the beam is narrow or points towards us and smaller when the beam is broad or points away from us. New data collected with ESA’s high energy observatories, Integral and XMM-Newton, now show that this picture is not so clear-cut and that the amount of energy emitted by GRBs can vary significantly. “The idea that all GRBs spit out the same amount of gamma rays, or that they are ‘standard candles’ as we call them, is simply ruled out by the new data,” said Dr Sergey Sazonov, from the Space Research Institute of the Russian Academy of Sciences, Moscow (Russia) and the Max-Planck Institute for Astrophysics, Garching near Munich (Germany).

Sazonov and an international team of researchers studied the GRB detected by Integral on 3 December 2003 and given the code-name of GRB 031203. Within a record 18 seconds of the burst, the Integral Burst Alert System had pinpointed the approximate position of GRB 031203 in the sky and sent the information to a network of observatories around the world. A few hours later one of them, ESA’s XMM-Newton, determined a much more precise position for GRB 031203 and detected a rapidly fading X-ray source, which was subsequently seen by radio and optical telescopes on the ground.

This wealth of data allowed astronomers to determine that GRB 031203 went off in a galaxy less than 1300 million light years away, making it the closest GRB ever observed. Even so, the way in which GRB 031203 dimmed with time and the distribution of its energy were not different from those of distant GRBs. Then, scientists started to realise that the concept of the ‘standard candle’ may not hold. “Being so close should make GRB 031203 appear very bright, but the amount of gamma-rays measured by Integral is about one thousand times less than what we would normally expect from a GRB,” Sazonov said.

A burst of gamma rays observed in 1998 in a closer galaxy appeared even fainter, about one hundred times less bright than GRB 031203. Astronomers, however, could not conclusively tell whether that was a genuine GRB because the bulk of its energy was emitted mostly as X-rays instead of gamma-rays. The work of Sazonov’s team on GRB 031203 now suggests that intrinsically fainter GRBs can indeed exist.

A team of US astronomers, coordinated by Alicia Soderberg from the California Institute of Technology, Pasadena (USA), studied the ‘afterglow’ of GRB 031203 and gave further support to this conclusion. The afterglow, emitted when a GRB’s blastwave shocks the diffuse medium around it, can last weeks or months and progressively fades away. Using NASA’s Chandra X-ray Observatory, Soderberg and her team saw that the X-ray brightness of the afterglow was about one thousand times fainter than that of typical distant GRBs. The team’s observations with the Very Large Array telescope of the National Radio Astronomy Observatory in Socorro (USA) also revealed a source dimmer than usual.

Sazonov and Soderberg explain that their teams looked carefully for signs that GRB 031203 could be tilted in such a way that most of its energy would escape Integral’s detection. However, as Sazonov said, “the fact that most of the energy that we see is emitted in the gamma-ray domain, rather than in the X-rays, means that we are seeing the beam nearly on axis.” It is, therefore, unlikely that much of its energy output can go unnoticed.

This discovery suggests the existence of a new population of GRBs much closer but also dimmer than the majority of those known so far, which are very energetic but distant. Objects of this type may also be very numerous and thus produce more frequent bursts.

The bulk of this population has so far escaped our attention because it lies at the limit of detection with past and present instruments. Integral, however, may be just sensitive enough to reveal a few more of them in the years to come. These could be just the tip of the iceberg and future gamma-ray observatories, such as the planned NASA’s Swift mission, should be able to extend this search to a much larger volume of the Universe and find many more sub-energetic GRBs.

Original Source: ESA News Release

Rosetta’s View of Our Home

Image credit: ESA
This image, taken by ESA?s Rosetta comet-chaser spacecraft, shows the Earth-Moon system from a distance of 70 million kilometres. This is close to the maximum distance reached by the spacecraft so far this year.

However, this is a tiny distance compared to Rosetta?s epic journey when, in 10 years time, it will have travelled distances of over one thousand million kilometres from Earth, and about 800 million kilometres from the Sun, to meet Comet 67P/Churyumov-Gerasimenko.

This image was taken by the Navigation Camera System (NAVCAM) on board the Rosetta spacecraft, activated for the first time on 25 July 2004. This system, comprising two separate independent camera units (for back-up), will help to navigate the spacecraft near the comet nucleus. The cameras perform both as imaging cameras and star sensors, and switch functions by means of a refocusing system in front of the first lens.

At the comet, extremely high-precision measurements of the relative distance and velocity (between spacecraft and nucleus) will be needed. These are not achievable with the ground-based methods normally used with all other spacecraft or for normal Rosetta trajectory determinations.

In the meantime though, the cameras can also be used to automatically track the two asteroids that Rosetta will be visiting during its long cruise, Steins and Lutetia.

Original Source: ESA News Release

A View of Hurricane Alex

NASA’s Terra satellite captured this true-color image of Hurricane Alex, the first Atlantic hurricane of the season, at noon EDT on Tuesday, August 3. Around that time, the Category 2 storm was pounding North Carolina’s Outer Banks with winds of up to 100 miles an hour. It’s expected to eventually turn east and head out to sea.

The resolution on this photo, from Terra’s Moderate Resolution Imaging Spectroradiometer (MODIS), is 2 kilometers per pixel.

Original Source: NASA News Release

Our Solar System Could Be Special

On the evidence to date, our solar system could be fundamentally different from the majority of planetary systems around stars because it formed in a different way. If that is the case, Earth-like planets will be very rare. After examining the properties of the 100 or so known extrasolar planetary systems and assessing two ways in which planets could form, Dr Martin Beer and Professor Andrew King of the University of Leicester, Dr Mario Livio of the Space Telescope Science Institute and Dr Jim Pringle of the University of Cambridge flag up the distinct possibility that our solar system is special in a paper to be published in the Monthly Notices of the Royal Astronomical Society.

In our solar system, the orbits of all the major planets are quite close to being circular (apart from Pluto’s, which is a special case), and the four giant planets are a considerable distance from the Sun. The extrasolar planets detected so far – all giants similar in nature to Jupiter ? are by comparison much closer to their parent stars, and their orbits are almost all highly elliptical and so very elongated.

“There are two main explanations for these observations,” says Martin Beer. “The most intriguing is that planets can be formed by more than one mechanism and the assumption astronomers have made until now – that all planets formed in basically the same way – is a mistake.”

In the picture of planet formation developed to explain the solar system, giant planets like Jupiter form around rocky cores (like the Earth), which use their gravity to pull in large quantities of gas from their surroundings in the cool outer reaches of a vast disc of material. The rocky cores closer to the parent star cannot acquire gas because it is too hot there and so remain Earth-like.

The most popular alternative theory is that giant planets can form directly through gravitational collapse. In this scenario, rocky cores – potential Earth-like planets – do not form at all. If this theory applies to all the extrasolar planet systems detected so far, then none of them can be expected to contain an Earth-like planet that is habitable by life of the kind we are familiar with.

However, the team are cautious about jumping to a definite conclusion too soon and warn about the second possible explanation for the apparent disparity between the solar system and the known extrasolar systems. Techniques currently in use are not yet capable of detecting a solar-system look-alike around a distant star, so a selection effect might be distorting the statistics – like a fisherman deciding that all fish are larger than 5 inches because that is the size of the holes in his net.

It will be another 5 years or so before astronomers have the observing power to resolve the question of which explanation is correct. Meanwhile, the current data leave open the possibility that the solar system is indeed different from other planetary systems.

Original Source: RAS News Release

Structure of Saturn’s South Pole

Saturn?s southern polar region exhibits concentric rings of cloud which encircle a dark spot at the pole. To the north, wavy patterns are evident, resulting from the atmosphere moving with different speeds at different latitudes.

The image was taken with the narrow angle camera on July 13, 2004, from a distance of 5 million kilometers (3.1 million miles) from Saturn through a filter sensitive to wavelengths of infrared light centered at 889 nanometers. The image scale is 29 kilometers (18 miles) per pixel. Contrast has been enhanced slightly to aid visibility.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini-Huygens mission for NASA’s Office of Space Science, Washington, D.C. The imaging team is based at the Space Science Institute, Boulder, Colorado.

For more information about the Cassini-Huygens mission, visit http://saturn.jpl.nasa.gov and the Cassini imaging team home page, http://ciclops.org.

Expedition 9 Completes Third Spacewalk

Two International Space Station spacewalkers began rolling out the welcome mat for a new cargo vehicle this morning. Expedition 9 Commander Gennady Padalka and NASA ISS Science Officer Mike Fincke spent 4? hours outside the Station swapping out experiments and installing hardware associated with Europe’s Automated Transfer Vehicle (ATV), scheduled to launch on its maiden voyage to ISS next year.

The ATV is an unpiloted cargo carrier like the Russian Progress supply vehicles, but has a cargo capacity about 2? times that of a Progress. The European Space Agency’s (ESA) ATV is scheduled for its first launch in the fall of 2005 aboard an ESA Ariane 5 rocket from French Guiana. In addition to carrying cargo, including fuel, water, oxygen and nitrogen, it also can reboost the Station. Like the Progress, the ATV will burn up when it re-enters the atmosphere. During the spacewalk Padalka and Fincke worked smoothly around the exterior of the Russian Zvezda Service Module in their Orlan spacesuits. The pair exited the Pirs Docking Compartment airlock at 1:58 a.m. CDT and began work on the Russian segment immediately.

The crewmembers moved to the aft end cone of Zvezda, where they found a wide open workspace. ISS Progress 14 had been undocked from the area on Friday.

Their first task was to replace an experiment, called SKK that exposes materials the space environment with a fresh sample container. They also replaced a Kromka experiment unit that measures contamination from Service Module thruster firings.

Their attention then turned to preparing the Station for the arrival of ATVs by installing new rendezvous and docking equipment. They installed two antennas and replaced three laser reflectors with three more advanced versions than the ones launched with Zvezda in 2000. One three-dimensional reflector was also installed to replace three other old reflectors the spacewalkers removed.

While in the area, the crew also disconnected a cable for a camera that has broken and will be replaced on a future spacewalk. The crew also retrieved another materials experiment, Platan-M. The crew returned to Pirs with the Platan-M, Kromka No.2, SKK No. 2 and the six old laser reflectors in tow.

As they worked at the rear of the Service Module, the three 600-pound Control Moment Gyroscopes that control the orientation in space of the orbiting laboratory approached their saturation level, a condition that had been expected. The Station was placed in free drift while the spacewalkers continued working. Consequently, as power conservation measures were executed, S-band communication was temporarily lost.

At about 4:15 a.m. CDT, the spacewalkers, who were about 40 minutes ahead of their timeline, were asked to clear the area. Once they moved forward, the thrusters on the Service Module were activated to realign the Station’s attitude and S-band communication was also restored.

Subsequently, at about 5 a.m. CDT, the Control Moment Gyroscopes reassumed attitude control and the Service Module thrusters were turned off. The spacewalkers then returned to work at the rear of the Service Module.

The crew closed the hatch and ended the spacewalk at 6:28 a.m. CDT. This was the 55th spacewalk in support of Station assembly and maintenance, the 30th staged from the Station itself, the fifth for Padalka and Fincke’s third.

Information on the crew’s activities aboard the Space Station, future launch dates, as well as Station sighting opportunities from anywhere on the Earth, is available on the Internet at:

http://spaceflight.nasa.gov/

Details on Station science operations can be found on an Internet site administered by the Payload Operations Center at NASA’s Marshall Space Flight Center in Huntsville, Ala., at:

http://scipoc.msfc.nasa.gov/

Original Source: NASA News Release

New Differences Between Matter and Antimatter

Today, August 2nd 2004, particle physicists from the UK and around the world working on the BABAR experiment at the Stanford Linear Accelerator Center (SLAC) in the USA, announced exciting new results demonstrating a dramatic difference in the behaviour of matter and antimatter. Their discovery may help to explain why the Universe we live in is dominated by matter, rather than containing equal parts matter and anti-matter.

SLAC’s PEP-II accelerator collides electrons and their antimatter counterparts, positrons, to produce an abundance of exotic heavy particle and anti-particle pairs known as B and anti-B mesons. These rare forms of matter and antimatter are short-lived, decaying in turn to other lighter subatomic particles, such as kaons and pions, which can be seen in the BABAR experiment.

“If there were no difference between matter and antimatter, both the B meson and the anti-B meson would exhibit exactly the same pattern of decays. However, our new measurement shows an example of a large difference in decay rates instead.” said Marcello Giorgi, of SLAC, Pisa University and INFN, Spokesman of BABAR.

By sifting through the decays of more than 200 million pairs of B and anti-B mesons, experimenters have discovered striking matter-antimatter asymmetry. “We found 910 examples of the B meson decaying to a kaon and a pion, but only 696 examples for the anti-B”, explained Giorgi. “The new measurement is very much a result of the outstanding performance of SLAC’s PEP-II accelerator and the efficiency of the BABAR detector. The accelerator is now operating at 3 times its design performance and BABAR is able to record about 98% of collisions.”

While BABAR and other experiments have observed matter-antimatter asymmetries before, this is the first time that a difference has been found by simple counting of the number of decays of B and anti-B mesons to the same final state. This effect is known as direct CP violation and is found to be 13%; a similar effect occurs for decays of Kaons and antiKaons but only at the level of 4 parts in a million!

“This is a strong, convincing signal of direct CP violation in B decays, a type of matter-antimatter asymmetry which was expected to exist but has not been observed before. With this discovery the full pattern of matter-antimatter asymmetries is coming together into a coherent picture. I am very excited and pleased as one of my postgraduate students, Carlos Chavez who is currently at SLAC, was directly involved.” said Christos Touramanis of the University of Liverpool.

Dan Bowerman, a member of the BABAR team from Imperial College adds “When the universe began with the big bang, matter and antimatter were created in equal amounts. However, all observations indicate that we live in a universe made only of matter. So we have to ask, what happened to the antimatter? The work at BABAR is bringing us closer to answering this question.”

Subtle differences between the behaviour of matter and antimatter must be responsible for the matter-antimatter imbalance that developed in our universe. But our current knowledge of these differences is incomplete and insufficient to account for the observed matter domination. CP violation is one of the three conditions outlined by Russian physicist Andrei Sakharov to account for the observed imbalance of matter and antimatter in the universe.

Professor Ian Halliday, Chief Executive of the Particle Physics and Astronomy Research Council which funds UK participation in BABAR said: “We still don’t understand fully how the matter dominated Universe we live in has evolved. However this new result, and recent related measurements in BABAR and other experiments around the world, have greatly advanced our understanding in this area. There is still much to discover and learn on this fundamental issue.”

Original Source: PPARC News Release

MESSENGER Lifts Off for Mercury

NASA’s MESSENGER ? set to become the first spacecraft to orbit the planet Mercury ? launched today at 2:15:56 a.m. EDT aboard a Boeing Delta II rocket from Cape Canaveral Air Force Station, Fla.

The approximately 1.2-ton (1,100-kilogram) spacecraft, designed and built by the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Md., was placed into a solar orbit 57 minutes after launch. Once in orbit, MESSENGER automatically deployed its two solar panels and began sending data on its status. Once the mission operations team at APL acquired the spacecraft?s radio signals through tracking stations in Hawaii and California, Project Manager David G. Grant confirmed the craft was operating normally and ready for early system check-outs.

?Congratulations to the MESSENGER launch team for a spectacular start to this mission of exploration to the planet Mercury,? said Orlando Figueroa, Deputy Associate Administrator for Programs in the Science Mission Directorate at NASA Headquarters, Washington. ?While we celebrate this major milestone, let?s keep in mind there is still a lot to do before we reach our destination.?

?All the work that went into designing and building this spacecraft is paying off beautifully,? Grant said. ?Now the team is ready to guide MESSENGER through the inner solar system and put us on target to begin orbiting Mercury in 2011.?

During a 4.9-billion mile (7.9-billion kilometer) journey that includes 15 trips around the sun, MESSENGER will fly past Earth once, Venus twice and Mercury three times before easing into orbit around its target planet. The Earth flyby, in August 2005, and the Venus flybys, in October 2006 and June 2007, will use the pull of the planets’ gravity to guide MESSENGER toward Mercury’s orbit. The Mercury flybys in January 2008, October 2008 and September 2009 help MESSENGER match the planet?s speed and location for an orbit insertion maneuver in March 2011. The flybys also allow the spacecraft to gather data critical to planning a yearlong orbit phase.

Since MESSENGER is only the second spacecraft sent to Mercury ? Mariner 10 flew past it three times in 1974-75 and gathered detailed data on less than half the surface ? the mission has an ambitious science plan. With a package of seven science instruments MESSENGER will determine Mercury’s composition; image its surface globally and in color; map its magnetic field and measure the properties of its core; explore the mysterious polar deposits to learn whether ice lurks in permanently shadowed regions; and characterize Mercury’s tenuous atmosphere and Earth-like magnetosphere.

?It took technology more than 30 years, from Mariner 10 to MESSENGER, to bring us to the brink of discovering what Mercury is all about,? said Dr. Sean C. Solomon, MESSENGER?s principal investigator from the Carnegie Institution of Washington, who leads a science team of investigators from 13 institutions across the U.S. ?By the time this mission is done we will see Mercury as a much different planet than we think of it today.?

MESSENGER, short for MErcury Surface, Space ENvironment, Geochemistry, and Ranging, is the seventh mission in NASA’s Discovery Program of lower cost, scientifically focused exploration projects. APL manages the mission for NASA?s Office of Space Science, built the spacecraft and will operate MESSENGER during flight. MESSENGER is the 61st spacecraft built at APL.

?With MESSENGER on its way to Mercury, the reality is sinking in that in a few years, we will see things that no human has ever seen and know infinitely more about the formation of the solar system than we know today,? said Dr. Michael D. Griffin, head of the APL Space Department.

The countdown and launch was managed by the NASA Launch Services Program based at the John F. Kennedy Space Center, Fla. The Delta II launch service was provided by Boeing Expendable Launch Systems, Huntington Beach, Calif. MESSENGER’s science instruments were built by APL; NASA Goddard Space Flight Center, Greenbelt, Md.; University of Michigan, Ann Arbor; and University of Colorado, Boulder. GenCorp Aerojet, Sacramento, Calif., and Composite Optics Inc., San Diego, provided MESSENGER’s propulsion system and composite structure, respectively. KinetX, Inc., Simi Valley, Calif., leads the navigation team. NASA’s Jet Propulsion Laboratory, Pasadena, Calif., manages the Deep Space Network of antenna stations the team uses to communicate with MESSENGER.

For photos of the launch or more information about the MESSENGER mission visit,

http://messenger.jhuapl.edu or http://www.ksc.nasa.gov

Original Source: NASA News Release

Lagoon Nebula By Hubble

This NASA/ESA Hubble Space Telescope image reveals a pair of half a light-year long interstellar ‘twisters’, eerie twisted funnel structures, in the heart of the Lagoon Nebula (M8).

The central hot star, O Herschel 36 (shown here on left, red), is the primary source of the ionising radiation for the brightest region in the nebula, called the ‘Hourglass’. Other hot stars, also present in the nebula, are ionising the outer visible parts of the nebulous material.

This ionising radiation heats up and ‘evaporates’ the surfaces of the clouds (seen as a blue ‘mist’ at the right of the image), and drives violent stellar winds which tear into the cool clouds.

Analogous to the phenomena of tornadoes on Earth, the large difference in temperature between the hot surface and cold interior of the clouds, combined with the pressure of starlight, may produce strong horizontal ‘windshear’ to twist the clouds into their tornado-like appearance.

The Lagoon Nebula and nebulae in other galaxies are sites where new stars are being born from dusty molecular clouds. These regions are the ‘space laboratories’ for astronomers to study how stars form and the interactions between the winds from stars and the gas nearby. By studying the wealth of data revealed by Hubble, astronomers will understand better how stars form in the nebulae.

These colour-coded images are the combination of individual exposures taken in 1995 with Hubble’s Wide Field and Planetary Camera 2 (WFPC2).

Original Source: ESA News Release