Scientific Equipment Headed to the Station

Image credit: ESA
Preparing for the arrival of the first European Automated Transfer Vehicle. Europe’s scientific utilisation of the International Space Station (ISS) took an important step forward with the launch of an unmanned Russian Progress cargo spacecraft today at 12:58 Central European Time (16:58 local time) from the Baikonur Cosmodrome in Kazakhstan.

The Progress supply vehicle will take two days to reach the International Space Station, carrying experiment hardware for the Delta mission to be carried out by ESA’s Dutch astronaut Andr? Kuipers in April, Matroshka, a European experiment facility for measuring radiation levels to which astronauts are exposed in space, and hardware to allow the European Automated Transfer Vehicle (ATV) to dock with the Station.

Launched by a Soyuz rocket on mission 13P, the Progress spacecraft with the serial number M1-11 is due to dock with the International Space Station on 31 January at 14:19 Central European Time. The Progress-type spacecraft are currently serving as supply vehicles for the International Space Station and are also uploading European hardware and equipment in advance of European missions to be carried out on the International Space Station.

Among other cargo, Progress is transporting scientific equipment which will be used during the upcoming Delta mission (Dutch Expedition for Life science, Technology and Atmospheric research). Andr? Kuipers, who on 19 April flies out to the ISS on a 10-day mission, will be employing this equipment to carry out a programme of scientific and educational activities. The Delta experiments on board Progress are:

* ARGES: This experiment will study high-intensity discharge (HID) lamps, which are used in all kinds of outdoor illuminations, making use of the absence of gravity to get new insights into how these lamps work and help develop more efficient lamps in future.
* HEAT: This experiment will be testing heat transfer properties in a section of a heat pipe with the aim of developing more efficient heat distribution systems for satellites and space vehicles in future.
* PROMISS-3: The experiment aims to analyse the growth of protein crystals in weightlessness, which cannot be observed to the same extent and with the same homogeneity on the ground.
* SUIT: The aims of this technology demonstration are to improve the orientation capabilities of astronauts and reduce space sickness. The experiment involves the astronaut wearing a special vest containing vibrating elements to assist his awareness of his position.
* ETD: This is a human physiology experiment which uses an eye-tracking device to determine eye movements in weightlessness and compare how they differ from eye movements on Earth and hence determine the effect the body?s balance system has on eye movements. This has an important bearing on balance disorders on the ground as well as in space.
* SAMPLE: This is a study into the composition and physiology of microbe species at different points around the ISS and also from the astronauts. The experiment will take samples from the chosen locations and further analyse how the different microbes found adapt to weightlessness.
* MOT: The aim of MOT is to calibrate accelerometers to be used to measure acceleration in three directions. Once calibrated the accelerometers will be incorporated into radio sensitive abdominal implants in mice for measuring acceleration, heart rate and body temperature.

Specialised containers called “biokits” are also part of the Progress cargo. They will be used to return the samples from the biological experiments taking place on the Delta mission.

Also on board Progress is a Russian spectrum analyser, not part of the Delta mission, to perform a dedicated in-orbit checkout on the European Global Transmission Services (GTS) experiment on the ISS. It will analyse the quality of the radio frequency cables of the GTS experiment, which might be the cause of the weaker than expected transmission signals received on the ground so far.

Another experiment on board Progress in addition to the Delta mission is the Matroshka experimental facility, which will be placed on the outside of the Russian Zvezda module. It will measure radiation levels experienced by astronauts in space. The facility has a human shape, consisting of a head and torso. It is made of natural bone and a synthetic material similar to human tissue. Sensors measuring radiation will be placed at various key external and internal positions on the model such as the areas of the stomach, lungs, kidney, colon and eyes. The facility will remain outside the ISS for a year. Matroshka is an ESA payload under the project leadership of DLR, the German Aerospace Centre in Cologne.

This flight is also carrying elements of the rendezvous and docking system of the Automated Transfer Vehicle (ATV), the European unmanned ISS supply spacecraft, similar in function – but not in size – to the Russian Progress. It will carry up to three times the cargo of the Progress vehicles, i.e. up to 7500kg.

The ATV-related equipment flown to the ISS consists of the following items:

* the videometer target assembly,
* laser retroreflectors,
* a container for old laser retroreflectors,
* two communication antennas,
* several cables.

This equipment from Russia and from ESA is required for the rendezvous between the first ATV, called Jules Verne, and the ISS early next year. The videometer, which will be located on the ATV spacecraft, will enable rendezvous operations in orbit to be carried out with a degree of precision never yet attained. This instrument will analyse the laser light emitted by the ATV and reflected back to it by the retroreflectors. These retroreflectors make up part of the videometer target assembly, serving as targets on the docking side of the service module. Two sets of different patterns of retroreflectors will enable the ATV ? from a distance of 300m onwards – to know its distance from and angular orientation to the ISS precisely.

The two antennas are needed for voice and data communications between the Russian Zvezda Module and the ATV. This sophisticated antenna system made in Russia will require six more, to be flown out later by other Progress ships.

All these ATV-related elements will be installed on the rear side of the Zvezda module during extravehicular activities scheduled for this July. Some old ATV retroreflectors, installed on Zvezda before its launch in 1998, will be brought back to Earth for material analysis.

The remaining experiment equipment for the Delta mission will be launched to the ISS together with Andr? Kuipers in the manned Soyuz TMA-4. This is scheduled for launch from Baikonur as mission 8S on 19 April. Kuipers is currently training for the mission at Star City near Moscow.

Original Source: ESA News Release

Opportunity Landing Site Named for Challenger Crew

NASA announced plans to name the landing site of the Mars Opportunity rover in honor of the Space Shuttle Challenger’s final crew. The area in the vast flatland called Meridiani Planum, where Opportunity landed this weekend, will be called the Challenger Memorial Station.

The seven-member crew of Space Shuttle Challenger was lost when the orbiter suffered an in-flight breakup during launch Jan. 28, 1986, 18 years ago today.

NASA selected Meridiani Planum because of extensive deposits of a mineral called crystalline hematite, which usually forms in the presence of liquid water. Scientists had hoped for a specific landing site where they could examine both the surface layer that’s rich in hematite and an underlying geological feature of light-colored layered rock. The small crater in which Opportunity alighted appears to have exposures of both, with soil that could be the hematite unit and an exposed outcropping of the lighter rock layer.

Challenger’s 10th flight was to have been a six-day mission dedicated to research and education, as well as the deployment of the TDRS-B communications satellite.

Challenger’s commander was Francis R. Scobee and the mission pilot was Michael J. Smith. Mission specialists included Judith A. Resnik, Ellison S. Onizuka and Ronald E. McNair. The mission also carried two payload specialists, Gregory B. Jarvis and Sharon Christa McAuliffe, who was the agency’s first teacher in space.

Opportunity successfully landed on Mars Jan. 25. It will spend the next three months exploring the region surrounding what is now known as Challenger Memorial Station to determine if Mars was ever watery and suitable to sustain life.

Opportunity?s twin, Spirit, is trailblazing a similar path on the other side of the planet, in a Connecticut-sized feature called Gusev Crater.

A composite image depicting the location of the Challenger Memorial Station can be found on the Web at:

http://www.jpl.nasa.gov/mer2004/rover-images/jan-28-2004/captions/image-1.html

NASA’s Jet Propulsion Laboratory (JPL), a division of the California Institute of Technology, Pasadena, manages the Mars Exploration Rover project for NASA’s Office of Space Science in Washington.

Additional information about the project is available from NASA, JPL and Cornell University, Ithaca, N.Y., on the Internet at: http://www.nasa.gov/

Ocean Patterns Dictate Dry and Wet Periods

Image credit: NASA/JPL
The cooler and drier conditions in Southern California over the last few years appear to be a direct result of a long-term ocean pattern known as the Pacific Decadal Oscillation, according to research presented recently at the 2004 meeting of the American Meteorological Society.

The study by Steve LaDochy, associate professor of geography at California State University, Los Angeles; Dr. Bill Patzert, research oceanographer at NASA’s Jet Propulsion Laboratory in Pasadena, Calif.; and others, suggests Pacific oceanic and atmospheric measurements can be used to forecast seasonal West Coast temperatures and precipitation up to a year in advance, from Seattle to San Diego.

An important climate controller, the Pacific Decadal Oscillation is a basin-wide oceanic pattern similar to El Ni?o and La Ni?a but much larger. The pattern lasts many decades rather than just a few months like El Ni?o and La Ni?a. The climatic fingerprints of the pattern are most visible in the North Pacific and North America, with secondary influences coming from the tropics. The long-term nature of the pattern makes it useful for forecasting, as its effects persist for so long.

Since mid-1992, NASA has been able to provide space-based, synoptic views of the entire Pacific Ocean and its shifts in heat content through the Topex/Poseidon mission and its follow-up mission, Jason (which began in 2001). Before these satellites were available, monitoring oceanic climate signals in near-real time was virtually impossible.

The remarkable data and images can tag and monitor the shifts in short-term climate events, like El Ni?o and La Ni?a, and long-term events such as the Pacific Decadal Oscillation. These data provide a 13-year continuous, complete time-series of two major El Ni?os and two La Ni?as, and have made it possible to detect a major phase shift of the Pacific Decadal Oscillation. Patzert and LaDochy show that these data, when combined with longer-term studies of land-based data, provide a powerful set of forecasting tools.

The pattern shifted to a negative, cool phase, leading to wetter conditions in the U.S. Pacific Northwest, and drier than normal conditions in Central and Southern California this decade. Since the last El Nino in 1997-1998, the Los Angeles area has had only 79 percent of its normal rainfall, Patzert said. Lake Mead, the great fresh-water reservoir in southeast Nevada, is at less than 50 percent of normal capacity. Also, huge West Coast fires over the past few years have been greatly exacerbated by drought induced by the pattern, Patzert added.

“These shifts in the pattern are long-term tendencies, which actually have a bigger economic impact than El Ni?o,” said Patzert. “People talk about floods from El Ni?o, but what really has a harsh and costly impact is a five-year drought.”

“A full cycle of the Pacific Decadal Oscillation (cool to warm and back to cool) runs about 50 years,” said LaDochy. “Over the next several years there is going to be a tendency toward dry and colder temperatures in the southern U.S. West Coast. It is very difficult to forecast day-to-day here on the West Coast, but we can say with some confidence that over the next five years, we’d better start saving water.”

The researchers used more than 50 years of U.S. climatic information, and Pacific atmospheric and oceanic data from the National Oceanic and Atmospheric Administration?s National Centers for Environmental Prediction. By comparing data, they saw strong correlations between Pacific climate patterns, temperatures and precipitation trends on the West Coast. They then were able to develop “hindcasts” to explain temperature and precipitation variability for West Coast regions. These decadal cycles also will be useful for explaining future regional climate variability.

NASA’s Earth Science Enterprise is dedicated to understanding the Earth as an integrated system and applying Earth System Science to improve prediction of climate, weather and natural hazards using the unique vantage point of space.

For more information and images about the research on the Internet, visit:

http://www.gsfc.nasa.gov/topstory/2004/0116westcoast.html.

JPL is managed for NASA by the California Institute of Technology in Pasadena.

Original Source: NASA/JPL News Release

Martian Terrain Named for Lost Apollo Astronauts

Image credit: NASA
NASA memorialized the Apollo 1 crew — Gus Grissom, Ed White and Roger Chaffee — by dedicating the hills surrounding the Mars Exploration Rover Spirit’s landing site to the astronauts. The crew of Apollo 1 perished in flash fire during a launch pad test of their Apollo spacecraft at Kennedy Space Center, Fla., 37 years ago today.

“Through recorded history explorers have had both the honor and responsibility of naming significant landmarks,” said NASA administrator Sean O’Keefe. “Gus, Ed and Roger’s contributions, as much as their sacrifice, helped make our giant leap for mankind possible. Today, as America strides towards our next giant leap, NASA and the Mars Exploration Rover team created a fitting tribute to these brave explorers and their legacy.”

Newly christened “Grissom Hill” is located 7.5 kilometers (4.7 miles) to the southwest of Spirit’s position. “White Hill” is 11.2 kilometers (7 miles) northwest of its position and “Chaffee Hill” is 14.3 kilometers (8.9 miles) south-southwest of rover’s position.

Lt. Colonel Virgil I. “Gus” Grissom was a U.S. Air Force test pilot when he was selected in 1959 as one of NASA’s Original Seven Mercury Astronauts. On July 21, 1961, Grissom became the second American and third human in space when he piloted Liberty Bell 7 on a 15 minute sub-orbital flight. On March 23, 1965 he became the first human to make the voyage to space twice when he commanded the first manned flight of the Gemini space program, Gemini 3. Selected as commander of the first manned Apollo mission, Grissom perished along with White and Chaffee in the Apollo 1 fire. He is buried at Arlington National Cemetery, Va.

Captain Edward White was a US Air Force test pilot when selected in 1962 as a member of the “Next Nine,” NASA’s second astronaut selection. On June 3, 1965, White became the first American to walk in space during the flight of Gemini 4. Selected as senior pilot for the first manned Apollo mission, White perished along with Grissom and Chaffee in the Apollo 1 fire. He is buried at his alma mater, the United States Military Academy, West Point, N.Y.

Selected in 1963 as a member of NASA’s third astronaut class, U.S. Navy Lieutenant Commander Roger Chaffee worked as a Gemini capsule communicator. He also researched flight control communications systems, instrumentation systems, and attitude and translation control systems for the Apollo Branch of the Astronaut office. On March 21, 1966, he was selected as pilot for the first 3-man Apollo flight. He is buried at Arlington National Cemetery, Va.

Images of the Grissom, White and Chaffee Hills can be found at: http://www.jpl.nasa.gov/mer2004/rover-images/jan-27-2004/captions/image-1.html

The Jet Propulsion Laboratory, Pasadena, Calif., manages the Mars Exploration Rover project for NASA’s Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology, also in Pasadena. Additional information about the project is available from JPL at http://marsrovers.jpl.nasa.gov and from Cornell University, Ithaca, N.Y., at http://athena.cornell.edu.

Original Source: NASA/JPL News Release

Volcanoes Would Be Good Future Targets

Image credit: NASA/JPL
The current generation of Mars missions have adopted the theme, “Follow the Water”, as a quest to understand the complex geological history of a planet that may have had significant reserves once. For that much warmer and wetter Mars, this motto also requires other ingredients for microbial life, including primordial “fire” in the form of biological temperature ranges.

The global picture of Mars is sometimes compared terrestrially to Antarctic dry regions, only colder. The surface temperature averages -64 F (-53 C), but varies between 200 below zero during polar nights to 80 F (27 C) at midday peaks near the equator. Such temperature extremes suggest that to realize a locally warmer Mars today may require extra heat, such as near a geothermal source.

To consider such interesting places where martian fire might work with other primordial elements like soil, wind and water to give unique science opportunities, Astrobiology Magazine had the chance to talk with Tracy Gregg, Ph.D., assistant professor of geology at the University of Buffalo and chair of the Planetary Geology Division of the Geological Society of America.

Astrobiology Magazine (AM): Given the Pathfinder and Spirit successes with airbag landings, does this descent method make scientists interested in going to places more challenging, like near volcanoes?

Dr. Tracy Gregg (TG): With the success of Spirit, I feel so much more confident about future Mars landers. The airbags seem to be able to withstand quite a bit of trauma. If both of these [Opportunity and Spirit] landers survive with airbag technology, then it blows the doors wide open for future Mars landing sites with far more interesting terrain.

A landing site near a volcano might be possible, now that the airbag technology has worked so wonderfully.

AM: Isn’t Spirit’s landing site at Gusev crater southeast about 120 miles from Apollinaris Patera, and so would that interest include taking a trip back to the Gusev region?

TG: I’d like to see us land ON a volcano. Right on the flanks.

AM: As a geologist, is there interest in the evidence for layering at Meridiani for the Opportunity mission to explore? Would that be sediment or volcanic layering?

TG: Probably some of both. There is a high possibility that we will get to see layers of ancient rock, deposited when Mars was warm and wet and could have supported life. Evidence of river channels, which we expect to see at Sinus Meridiani, could be remnants of that early, warm history. Those layers could be lava flows. Often the best place to look for evidence of life on any planet is near volcanoes.

That may sound counterintuitive, but think about Yellowstone National Park, which really is nothing but a huge volcano. Even when the weather in Wyoming is 20 below zero, all the geysers, which are fed by volcanic heat, are swarming with bacteria and all kinds of happy little things cruising around in the water. So, since we think that the necessary ingredients for life on earth were water and heat, we are looking for the same things on Mars, and while we definitely have evidence of water there, we still are looking for a source of heat.

AM: On the surface, what would exposed hematite look like in pictures? Matt Golombek, the project scientist for Pathfinder and a current rover science team member, indicated that Meridiani will look totally different from Gusev, with a grey, basaltic landscape. Are there any places on Earth that might give a tie-point to anticipating what the images will show?

TG: It depends what “pictures” you’re talking about and how fine-grained the hematite is. Hematite, if sufficiently abundant on the surface, may make the surface black and sparkly to a human eye. But it’s more likely to be observed using the special tools Spirit is equipped with–microscopic imagers and a spectrometer.

AM: Where are large hematite deposits found on Earth, and is their history terrestrially always tied to water?

TG: I’m not sure off the top of my head where they are globally–there are some huge deposits in the north-central US (think about the Minnestota and Michigan mining histories). Certainly on Earth they only form in the presence of large volumes of water.

AM: Is it correct to say that there are no active surface volcanoes on Mars today?

TG: If you’d asked me that 10 years ago–or even 5–I might’ve said yes. Now I’m not so sure.

AM: Do you think there is geological interest in landing in higher latitudes, nearer the martian poles?

TG: YES.

AM: Would the rocks be less interesting at higher latitudes but the seasons more interesting because of the presence of frost and the annual melting exchanges that happen between ice and dry-ice subliming at different rates?

TG: Higher latitudes are interesting to me because that’s where the large volcanoes are, and there’s more opportunities for magma/water interactions. Those interactions are probably extremely important for the origin and evolution of life.

AM: Are there alternatives to airbags and rocket landings?

TG: Sure, but so far airbags seem to work the best.

AM: Do you have an opinion about a sample return mission to Mars, using the Stardust mission profile–in which a projectile is dropped on the surface and that kicked-up dust is then flown through with a capture device from orbit?

TG: I’m a volcanologist who studies lava flows. I’m most interested in hard lava, or indurated volcanic ash. I’d much rather see a rock hammer go to Mars than a dust bin. However, any sample return would reveal a phenomenal amount of information about the surface processes operating on Mars.

I’d embrace any sample over none…

AM: If you were to guess at where the best chance to find active volcanology today on Mars might be, can you describe that spot briefly? For instance would this be a shield volcano visible on the surface, or some kind of subterranean magma chamber that is not exposed permanently?

TG: OK, I have to be a little picky here and supply some definitions before I can answer your question. As a planetary volcanologist, I have some pretty specific meanings in mind for certain terms, and I want to be sure you understand where I’m coming from.

Typically, a volcano on Earth is considered to be “active” if it has erupted sometime within the past 10 thousand years. By that definition, a “subterranean magma chamber” in and of itself would not constitute “active” volcanism, if all the activity is beneath the surface.

Can we use those same definitions on Mars to define “active volcanism?” Sure. But should we? I don’t think so.

The 10,000 year cutoff was chosen for Earth both for scientific and practical reasons. Scientifically, we know that it isn’t terribly likely for a given volcanic vent to spout off again if it hasn’t done anything in about 10,000 years. Practically, that’s about the time that the last Ice Age ended, leaving behind remarkable geologic signs–so all we have to do is decide if the volcanic activity is older or younger than the most recent glacial activity.

That’s not something we can do on Mars.

That said, where would I look for recent volcanic activity? Depends on how you want to define it on Mars. I strongly suspect there are still molten (or at least mushy) magma bodies beneath the huge Tharsis volcanoes, and beneath Elysium Mons.

But the youngest surficial activity discovered to date (and it’s probably 1 million years old, which would be considered quite young, and possibly “active” on Mars) is in a region that contains no large volcanic structures of any kind. Instead, there are cracks in the ground, and a few low-lying volcanoes that can’t even be seen except in the high-resolution topography (they are too subtle for imagery to reveal). This area is called Cerberus Fossae.

This tells me that “active” volcanism, if it exists in the terrestrial sense, is probably in the Northern Hemisphere, where the crust is thin, and possibly close to Tharsis or Elysium. But not necessarily.

Original Source: Astrobiology Magazine

What is that Bedrock?

Image credit: NASA/JPL
The first impression of the Opportunity landing site in color is the light, exposed area about ten meters from the rover’s location inside a crater. The region has by now accumulated a plethora of adjectives and names: bizarre, alien, hummocky, layered, crater-rim, outcrop, stratigraphic slice, tabular, segmented, slabby.

But what has scientists most intrigued is that the slabs are bedrock. The literal foundation of Mars is its bedrock. Bedrock is the solid, intact part of the planet’s crust. Whereas in comparison to terrestrial crust, parts of southern Arizona or Louisian may have thousands of feet of unconsolidated surficial material overlying bedrock, the depth to bedrock in a place like Maine ranges from ten to only a few hundred feet. Many of the more spectacular sites in Maine feature rugged bedrock exposed to view. To find bedrock is to know geologically that the history of this location is free from rock and boulder transport, mainly by wind, water, lava and impact debris.

Whatever happened on Mars over billions of years, that hummocky slab bears its records.

Steve Squyres, principal investigator for rover science, described the five exploration stages likely to follow in the next few weeks.

While still perched on its base petal, the rover cameras will first snap panoramic color images in octets of 45 degrees each, until a full picture shows the surroundings. Without driving, the rover’s pancam can probably get a good idea of the soil and rock surface composition, using its infrared capabilities to image circular aspects of the horizon in heat-sensitive colors. Called the mini-TES instrument, the main tool for this measures thermal emissions.

The mobile laboratory will then drive off its station, maneuvering down a ramp and 40 cm drop (slightly more than a foot). The rover will look at the fine soil nearby, in hopes of finding out why this particular region is rare on Mars in being rich with iron-oxides. The surface soil’s top layer is grey, much more grey than anything seen on Mars before. On the surface, Meridiani is the darkest color yet visited.

But this dark layer gave way when the airbags were retracted revealing a deep maroon layer underneath. When summarizing the science activities by discipline, Steve Squyres noted that most of the group members–atmospherics, long-term planning, mineralogy, geology–are not fully engaged until the instrument suite is checked out and deployed on the surface. But “the soil physical properties group is having the most fun” speculating about how this maroon and grey landform came to be. Squyres described the competing theories as either “we have soil with two distinct components of coarse, grey grains on top of fine red soil–or we have aggregates that are grey but when squished, the red comes out.

When certified to drive, the rover will explore the bedrock outcrop, while looking carefully for any layers or stratigraphic history. Since the rover is inside a crater (20 meters wide, 2-3 meters deep), the next step is probably to climb out. Depending on the soil texture, the rover is probably able to climb an embankment at a relatively steep 15 to 20 degree angle. As Squyres remarked: “We traveled 200 milllon miles or so to land in a crater. It was a hole-in-one.”

Since orbital images of the landing area shows three distinct color gradations, a first guess is that once outside this crater, the view will suddenly change to what is expected to be lighter colored soil. The brightest areas seen orbitally are the crater rims, followed by the flat plains, then the darkest interior to the craters, where Opportunity now is snapping charcoal-grey scenery. Since the horizon’s range is mainly restricted to 10 meters for now, once outside this crater the startling picture of a dark grey Mars will likely change yet again.

This second soil unit is brighter, perhaps from wind not apparent inside the craters, and will be looked at closely using the same diagnostics used on the crater floor and outcrop.

Squyres said the science team then looks to “head for the big one”–a 150 meter wide crater, probably 10-15 meters deep at least and about half-a-mile away. The bright rim of that crater may well be another remnant of bedrock or something different altogether.

How that driving spree will go looks promising so far. As pancam science lead, Jim Bell, described, where they can barely glimpse the horizon, it is flat and free of large rocks for five to six kilometers. This kind of “flat-out” driving terrain makes for fewer maneuvers to go the distance.

Once they survey the real Meridiani plain outside their crater, they will gain some higher ground–about the height of an average person of five to six feet climbing out of a hole of similar depth.

As JPL Center Director, Charles Elachi, pointed out on the night when Spirit first landed, the unique part of these missions is their multiplicity–not only two views of opposite sides of the planet, but also local mobility in which each science day that involves driving is comparable to a new landing. In 1976 Viking could only reach out and scratch the soil surface. The tiny Pathfinder rover could move between larger boulders, but had limited range. The Mars Exploration Rovers, with their mobile geology toolkit, are designed for the road.

Original Source: Astrobiology Magazine

Mars Society Responds to Bush Announcement

Image credit: NASA
On January 14, President George Bush gave a speech at NASA headquarters outlining a new strategic orientation for the American space agency. While some of the initial ideas for implementing the new space policy can and should be substantially improved upon, the policy overall clearly represents a significant and long-overdue step in the right direction for the American space program. The Steering Committee of the Mars Society therefore welcomes the new policy as presented in Presidential Directive entitled ?A Renewed Spirit of Discovery,? and strongly urges Congress to provide the funds requested for the initial steps requested for the program over the next fiscal year.

Our analysis of the important strengths and required areas for improvement of the new policy is presented below.

Analysis
As stated, the new Bush space policy offers both opportunities and pitfalls to those interested in furthering human exploration and expansion into space in general, and Mars in particular. While not representing the start of an actual Moon/Mars program, since nearly all serious spending for hardware systems other than the crew capsule is deferred to administrations coming into office in 2009 or beyond, it does in fact clear the ground for the initiation of such a program should the 2009 administration be so inclined. It also provides a certain amount of free energy that, if handled properly in the 2004-2008 period, could be used to help insure the emergence of a powerful human exploration initiative within the time frame of the 2009 administration.

In his speech, Bush redefined the purpose of the American space program as the ?establishment of a human presence throughout the solar system.? This statement may seem to some like a mere rhetorical flourish, but it actually has important concrete programmatic significance, as it legitimizes NASA spending supporting technology development for human exploration of the Moon and Mars. Such spending was forbidden under the previous order of things, and for the past ten years technologists seeking funding for important human Moon/Mars exploration technologies had to justify them by arguing their value for other established programs, such as the JPL-led robotic exploration program or the ISS. This has made it impossible to obtain adequate funding for many technologies, such as planetary in-situ resource utilization (ISRU), and has led to disasters such as the promising JSC-led Transhab inflatable habitation program, which was derailed when the discovery that planetary exploration technology work was being done under ISS cover led to cancellation by congressional staff. It is for this reason that the Mars Society has had since its Founding Convention in 1998 campaigned for the establishment of a NASA line item for the support of human exploration technology development, so that such activity could take place openly. Bush?s initiative fully accomplishes this objective, with healthy initial program funding. For this reason, if no other, Bush?s move must be seen as an extremely positive development.

The new policy will also create a program organization at NASA headquarters, called Code T, which will significantly raise the level of NASA efforts to develop efficient plans for human planetary exploration. This is also a welcome development.

In addition, the Bush policy also provides a basis for including human exploration research requirements within the design of robotic planetary missions. In the late nineties, representatives of the human exploration missions office at JSC attempted to utilize flight opportunities aboard the JPL-led robotic Mars exploration landers, but as the JSC researchers had neither a mandate nor money, they had neither force nor funds to back up their requests, and were dealt with accordingly. Under the new space policy, both a mandate and funds should be available to support human exploration related research and technology flight experiments aboard robotic lunar and planetary spacecraft. This could allow such payloads to either fly as paying customers aboard the JPL/Code S sponsored science spacecraft, or alternatively, support the funding of human exploration program-controlled robotic landers whose primary mission would be to provide engineering data for the human exploration program, with other science payloads carried on a space-available basis.

The Bush policy also identifies where the funds required to support a true human exploration initiative will come from, to wit the redirection of the existing Space Shuttle and ISS budgets. Currently, the Shuttle budget runs about $4 billion per year, while the ISS budget is between one and two billion. This total of $5-$6 billion per year is more than sufficient to get humans to both the Moon and Mars within ten years of actual program start. Thus the initiative can be done within the existing NASA budget of about $16 billion per year in 2004 dollars, a level found supportable by presidents and congressional majorities of both political parties for the past four presidential terms. Thus the financial basis for the program is clear, and is not a budget buster or in any way fantastical.

In his speech, the President invited all nations to join with the United States in pursuing the proposed program. We welcome this statement, as we fully agree that the exploration and settlement of the solar system is a great goal that can help bring humanity together, one that is worthy of, and requires, the mobilization of the best talents of all the peoples of the Earth.

For various political and diplomatic reasons, the Bush policy delays the phase out of the Shuttle and ISS until 2010, thereby delaying substantial human exploration program start until about that time. Thus the choice on whether or not to really start a Moon or Mars human exploration program, and what its pace or objectives should be, is effectively being placed in the hands of the 2009 administration.

The merit of this decision is debatable. A key point however, is that the 2009 administration will have a choice. By making clear that the fundamental purpose of the human spaceflight program is to allow humans to FLY ACROSS SPACE (the Apollo era vision) to explore other worlds, rather than to allow humans to EXPERIENCE SPACE (the Shuttle era vision), the Bush policy (should it be sustained by either his reelection or the concurrence on this issue of an alternative 2005 administration) effectively precludes the commitment of NASA to a second generation Shuttle (?Shuttle 2?) as its next major program. As recently as a few months ago, substantial factions within space policy circles in both congress and NASA projected such a Shuttle 2 program as the agency?s next major project after ISS. Had that occurred the future would have looked like this: the present decade would be consumed with returning the Shuttle to flight and building ISS. The next decade would be devoted to extending the life of Shuttle and developing Shuttle 2. The 2020?s would then be a repeat of the 1980?s, attempting to make Shuttle 2 operational, leading to a decision in 2030 on the next major project, which probably would have been ISS-2. Thankfully, this ?Groundhog Day? scenario for perpetual stagnation in space has now been foreclosed on.

The decision to punt the responsibility for implementation, and thus the control, of the program to the 2009 administration promises to make the next five years an extremely interesting time for space advocates. In his speech, Mr. Bush defined human expansion into the solar system as NASA?s goal, and posed the idea of a lunar base initiated by 2020 as the strategy by which this objective might be approached. That is one plan, but the next five years will see other plans put forward for consideration by the political class as efficient means by which the desired overall goal can be achieved with maximum speed, reliability, and at minimum cost. The great debate on what our strategy for reaching the Moon and the planets should be has thus not been closed by Bush?s speech, but opened.

The victory in this healthy battle of ideas will go to those people who convince the players, not merely of today, but of 2009 and beyond, of the merit of their concepts. The Mars Society welcomes this challenge, and will seek to actively participate in this discussion to contribute its technical expertise and to convey an understanding to the political class, the technical community, the press, and the public that within the context of the new space policy, that the near-term human exploration of Mars is feasible, affordable, and truly worthy of the efforts and risks required.

In transitioning from one kind of space program to another, every effort should be made to prevent unnecessary collateral damage to valuable parts of the old program. The decision announced by NASA headquarters late last week to abandon the planned Shuttle mission to upgrade and reboost the Hubble Space Telescope (HST) is an example of the kind of mistake that needs to be avoided. The Cosmic Origins Spectrograph and Widefield Camera 3 designed to bring the HST to its full potential have already been built and tested, and promise an enormous scientific return upon delivery to orbit. If the Bush plan were to stand down the Shuttle immediately, and save the $24 billion required to operate it through 2010 so as to initiate the Moon/Mars program with substantial funding immediately, that would be one thing. But given the decision to return the Shuttle to flight, canceling the Hubble upgrade would only save about $200 million, or 1% of the Shuttle program?s budget, while destroying about 90% of its scientific value. This is extremely foolish.

Safety arguments won?t wash either; if the Shuttle is safe enough to fly to the ISS, its safe enough to perform its mission to Hubble. Indeed, while Shuttle missions to the Hubble may lack the on-orbit safe-haven of the ISS, the low-inclination of Hubble flights enables launch aborts to warm tropical waters, where crew survival chances are much better than in the frigid north Atlantic abort sites required by ISS launches. Moreover, it is difficult to understand how an agency which is too risk adverse to undertake a Shuttle mission to Hubble could possibly be serious in considering a mission to the Moon or Mars.

The cancellation of the Hubble mission can thus only be described as a serious mistake, apparently committed in the name of the desire to appear ?decisive? in breaking from the old paradigm in favor of the new. In addition to the harm done to astronomy, it would be a very bad thing for the infant new space policy to begin its life with a such a distasteful record. Under no circumstances should the alleged impending availability of the James Webb Space Telescope be accepted as a rationale for abandoning Hubble, either. That would be to repeat the mistake NASA made in abandoning the Saturn V for the supposedly superior Shuttle, or Skylab for the ISS ? errors which set back the space program by decades of time of tens of billions of dollars. If NASA?s leadership will not see reason on this issue, Congress should take forceful action to reverse this very bad decision.

Technological Issues
The right way to do a program whose objectives encompass both a permanent lunar base and the human exploration of Mars is to design a set of transportation hardware that can accomplish human Mars missions, a modified modular subset of which can be used to support lunar activities. Approaching the problem in this way can save a great deal of time and money, as only one hardware set needs to be developed instead of two. It also maximizes the value of the Moon as a testing ground for Mars, since under this approach to Moon missions will be done using the Mars hardware, and serve directly to shake it out. Provided this is the approach adopted, a program initiated in 2009 could easily achieve piloted lunar landing by 2015 and launch the first human Mars expedition by 2018. The build up of a permanent lunar base and continued Mars missions could then occur simultaneously. Since it is only possible to launch to Mars every other year in any case, the implications of a running concurrent programs are simply that the lunar program launch rate would be reduced somewhat during Mars launch years. Concurrent launch programs would also serve to minimize launch costs by maximizing the rate of production of the booster production lines, as the cost of running a launch vehicle manufacturing facility increases only marginally with a higher production rate. To use a mundane analogy, it takes very little extra labor to cook two steaks instead of one, provided you cook them both at the same time. In the production of launch vehicles this kitchen parable holds even more force, as labor costs overwhelmingly dominate those of materials.

Within the context of such a well-planned Moon/Mars program, there are certain technologies that are essential. We address only two of the most critical, heavy lift boosters and ISRU.

Heavy Lift Boosters
The key technical instrumentality required to make lunar bases and Mars missions feasible is a heavy lift vehicle with a hydrogen/oxygen upper stage capable of throwing payloads in the 50-tonne class on Trans-lunar or Trans-Mars injection. This is the capability demonstrated during the 1960?s by the Saturn V. Once such a vehicle is available, roundtrip Lunar missions or one-way delivery of habitations and other heavy payloads to the lunar surface can be readily accomplished with a single launch. Piloted Mars missions can also be accomplished using multiple discrete Trans-Mars launches of such a system, with no on-orbit assembly, as shown by the Mars Direct plan (Zubrin and Baker, 1990), the Stanford Mission plan (Lusignan, et al 1992), or the JSC Design Reference Mission 3 (Weaver et al, 1994).

Such Saturn V class launch systems can be readily created at this point either by converting the Shuttle launch stack through elimination of the orbiter and its replacement with a LOx/H2 upper stage, or the creation of new, all-liquid propulsion booster systems. The Mars Society was recently shown plans by one major aerospace company for evolving its existing line of medium lift boosters to create a family of modular heavy lift boosters with payloads ranging through quarter, half, and full Saturn V capabilities. Based on this company?s experience with previous successful launch vehicle developments, the entire development program to create the whole family of boosters could be accomplished in five years with a development cost of about $4 billion. The recurring launch cost for the Saturn V class system design was $300 million per launch, or less than $1000/lb for payload delivery to LEO. The methods of creating such booster families are obvious to experienced launch vehicle engineers, and we have no doubt that this company?s competitors have plans for creating similar hardware sets with comparable development costs and schedules.

The claims by certain pundits opposed to any exploration initiative that a new heavy lift booster would cost tens of billions to develop can thus readily be shown to have no basis in fact. Such heavy lift vehicles would also have many applications outside of the human exploration program.

ISRU
Both lunar bases and Mars expeditions are strongly benefited through the use of in-situ resource utilization (ISRU) techniques for the production of return propellant, human consumables, and vehicle fuels and oxygen for use in extended missions on a planetary surface. The mission mass savings for either lunar bases or Mars missions resulting from ISRU has been demonstrated in numerous studies, and significantly exceeds that offered by advanced propulsion concepts with much higher development and recurring system costs.

Effective ISRU require both chemical processing systems and reliable sources of power, for which space nuclear systems offer the greatest promise. We therefore strongly commend the administration for its Prometheus project to create such space nuclear systems. However we note that up until now, the sole applications considered by NASA for its space nuclear power systems have been spacecraft power and nuclear electric propulsion (NEP). Without dismissing the important value of NEP for outer solar system robotic missions and other missions involving large velocity changes undertaken across extended time frames, we note that the size of NEP units required to supply propulsion for human exploration missions are on the order of 10,000 kilowatts. In contrast, when used to produce chemical propellants on planetary surfaces, the required reactor size to support human exploration is reduced to about 100 kilowatts. This is because a much smaller reactor stationed on a planetary surface making propellant can emit energy over a long period of time prior to flight, store it as chemical propellant, which then can release the energy as fast as it is needed under flight conditions. The mission mass leverages achieved by such ISRU supported chemical propulsion options are greater than those offered by NEP, while for inner solar system missions, the flight times are less (two orders of magnitude less for Lunar applications). In addition, the ISRU-supported chemical systems can be used not only for orbital transfer, but for planetary ascent.

Thus while space nuclear power is enabling for ISRU, it is ISRU that greatly reduces the cost, and increases the value of space nuclear power in supporting human exploration. The two technologies should thus be pursued in parallel, and an appropriate fraction of the Prometheus budget applied towards bringing ISRU applications of space nuclear power to flight status, and to support robotic missions demonstrating such technology on the Moon and Mars.

Furthermore, requirements should be written into the Prometheus program to insure that the power systems developed are compatible for operation on the surface of the Moon and Mars, since their use on the planetary surface to produce propellants and consumables represents by far the most advantageous method of employing them to support near-term human space exploration, and their power is needed on the surface to support base operations in any case.

Both ISRU technology and heavy lift booster development should thus be central priorities of the Code T effort over the immediate period.

Other systems should be developed with similar concern for maximum commonality of hardware and technology across lunar and Mars mission applications.

Political Implications
The train of events set in motion by the new space policy will create a decision point circa 2009 that will offer three alternatives for future action. These are;

1. The 2009 administration could choose to abort the Moon/Mars program altogether, and simply use the Crew Exploration Vehicle (CEV) as a capsule launched atop expendables as a way of continuing to visit the ISS. This would lead to a Mir-type extended ISS program, conducted at lower cost than possible using Shuttle launches, but with no discernable purpose. This would result in stagnation in space for however long such a programmatic decision prevailed, and probable retrogression on heavy lift, ISRU, and other programs necessary for human exploration.

2. The 2009 administration could decide to proceed in accordance with idea of building a lunar base, starting 2020, without concern for the Mars mission except to make claims that lunar experience will no doubt be useful later when others contemplate going to Mars. This would result in the development of mostly incompatible lunar program hardware (except the booster), making it necessary to start developing an entire new hardware set circa 2030, or possibly 2040, given the budgetary entanglements such a stand-alone lunar program would create, making it likely that the first Mars landing would not occur before the middle of the 21st Century. Alternatively, given the limited interest provided by repeated dead-end Lunar expeditions, the program could simply expire.

3. The 2009 administration could decide to launch a humans to Mars program, with the objective of reaching Mars within ten years, with expeditions to the Moon using a modified subset of the Mars flight hardware beginning around program year 7. Because only one hardware set would need to be developed instead of two, and because in aerospace cost equals people times time, this represents a much lower cost approach to achieving the goals set forth in the new space policy than alternative (b). Moreover, it is the only approach that will result in human explorers walking on Mars within the working lifetime of any adult today.

It is therefore imperative that everyone who wishes to see the human exploration of Mars become a reality do everything he or she can to fight for the bold course represented by option C. In the labs and engineering organizations, in the press, in the classroom and the committee room, in the Arctic and in the desert, in the halls of congress, and in every venue of public opinion ranging from books and technical papers to internet newsgroups and late night talk radio, each will need to play their part.

A door has been opened, and a battle of ideas that will determine the shape of the human future for many years to come has now been truly joined. Where it will lead is up to us. Contending visions that two weeks ago were mere hypothetical debates among space activists have now entered the center of political discourse. We welcome the challenge. For as reason is our witness and courage is our guide, we shall prevail.

Original Source: Mars Society News Release

Opportunity’s Hardware is Working Properly

Image credit: NASA/JPL
During the second day on Mars for NASA’s Opportunity rover, key science instruments passed health tests and the rover made important steps in communicating directly with Earth.

Halfway around the planet, during its 22nd day on Mars, NASA’s Spirit obeyed commands for transmitting information that is helping engineers set a strategy for fixing problems with the rover’s computer memory.

On Earth this morning, scientists marveled at a high-resolution color “postcard” of Opportunity’s surroundings. The mosaic of 24 frames from the panoramic camera shows details from the edge of the lander to the distant horizon beyond the rim of the rover’s small home crater.

“We’re looking out across a pretty spectacular landscape,” said Dr. Jim Bell of Cornell University, Ithaca, N.Y., lead scientist for the panoramic cameras on Spirit and Opportunity. “It’s going to be a wonderful area for geologists to explore with the rover.”

The color view shows dark soil that brightened where it was compacted by the rolling spacecraft, and an outcropping of bedrock on the inside slope of the 20-meter (66-foot) crater in which the rover sits. Opportunity will be commanded to finish taking a 360- degree color panorama of the site during its third Mars day, which began at 12:01 p.m. PST today.

Another major step planned for Opportunity’s third day is to begin using its high-gain antenna for communicating directly with Earth at a high data rate, said Jackie Lyra of NASA’s Jet Propulsion Laboratory, Pasadena, Calif., activity lead for this rover event. In preparation for this transition, Opportunity found the Sun with its panoramic camera yesterday. Once oriented by knowing the position of the Sun, it can calculate how to point its high-gain antenna toward Earth.

“We’re making steady progress in our effort to get the wheels of the rover dirty,” said Mission Manager Jim Erickson of JPL. Still the earliest scenario for the rover to drive off its lander platform is more than a week away.

Opportunity has tested the three scientific sensing instruments on its robotic arm that will be used for up-close examination of rocks and soil: the microscopic imager, the alpha particle X-ray spectrometer for determining what elements are present, and a Moessbauer spectrometer for identifying iron-containing minerals. “I’m pleased to report that all are in perfect health,” said Dr. Steve Squyres of Cornell University, Ithaca, N.Y., principal investigator for the science instruments on the rovers.

Squyres had been especially concerned about the Moessbauer spectrometer because tests conducted while the spacecraft was on its way to Mars showed that an internal calibration system was not working as intended. However, after the rover landed on Mars, the instrument is functioning normally again. The Moessbauer spectrometer’s function for identifying iron-bearing minerals will be important in the scientific goal of determining the origin of iron-bearing hematite deposits in the Meridiani Planum region selected as Opportunity’s landing site.

“We have a perfectly functioning Moessbauer spectrometer, and given that we are now perched atop the hematite capital of the Solar System, that’s a good thing,” Squyres said.

Restoration efforts continue making progress on Spirit. “We have a patient in rehab, and we’re nursing her back to health,” said JPL’s Jennifer Trosper, mission manager.

Engineers found a way to stop Spirit’s computer from resetting itself about once an hour by putting the spacecraft into a mode that avoids use of flash memory. Flash memory is a type common in many electronic products, such as digital cameras, for storing information even when the power is off. The rover also has random- access memory, which cannot hold information during the rover’s overnight sleep. One of the next steps planned is to erase from flash memory the files stored there from the spacecraft’s cruise to Mars from Earth. That is intended to lessen the task of managing the flash memory files.

The rovers’ main task is to explore their landing sites during coming months for evidence in the rocks and soil about whether the sites’ past environments were ever watery and possibly suitable for sustaining life.

JPL, a division of the California Institute of Technology in Pasadena, manages the Mars Exploration Rover project for NASA’s Office of Space Science, Washington, D.C. Images and additional information about the project are available from JPL at http://marsrovers.jpl.nasa.gov and from Cornell University, Ithaca, N.Y., at http://athena.cornell.edu.

Original Source: NASA/JPL News Release

Rosetta Will Launch in a Month

Image credit: ESA
Rosetta is scheduled to be launched on board an Ariane-5 rocket on 26 February from Kourou, French Guiana.

Originally timed to begin about a year ago, Rosetta’s journey had to be postponed, as a precaution, following the failure of a different version of Ariane-5 in December 2002. This will be the first mission to orbit and land on a comet, one of the icy bodies that travel throughout the Solar System and develop a characteristic tail when they approach the Sun.

This delay meant that the original mission’s target, Comet Wirtanen, could no longer be reached. Instead, a new target has been selected, Comet 67P/Churyumov-Gerasimenko, which Rosetta will encounter in 2014 after a ?billiard ball? journey through the Solar System lasting more than ten years. Rosetta?s name comes from the famous ?Rosetta Stone?, from which Egyptian hieroglyphics were deciphered almost 200 years ago. In a similar way, scientists hope that the Rosetta spacecraft will unlock the mysteries of the Solar System.

Comets are very interesting objects for scientists, since their composition reflects how the Solar System was when it was very young and still ‘unfinished’, more than 4600 million years ago. Comets have not changed much since then. In orbiting Comet Churyumov-Gerasimenko and landing on it, Rosetta will collect information essential to an understanding of the origin and evolution of our Solar System. It will also help discover whether comets contributed to the beginnings of life on Earth. In fact comets are carriers of complex organic molecules that, delivered to Earth through impacts, perhaps played a role in the origin of living forms. Furthermore, ?volatile? light elements carried by comets might also have played an important role in forming the Earth?s oceans and atmosphere.

?Rosetta is one of the most challenging missions undertaken so far,? says Professor David Southwood, ESA Director of Science. ?No one has ever attempted such a mission, unique for its scientific implications as well as for its complex and spectacular interplanetary space manoeuvres.? Before reaching its target in 2014, Rosetta will circle the Sun four times on wide loops in the inner Solar System. During its long trek, the spacecraft will have to endure some extreme thermal conditions. Once it is close to Comet Churyumov-Gerasimenko, scientists will take it through a delicate braking manoeuvre; the spacecraft will then closely orbit the comet, and gently drop a lander on it. It will be landing on a small, fast-moving ?cosmic bullet? about whose ‘geography’ very little is known yet.

An amazing 10-year interplanetary trek
Rosetta is a three-tonne box-type spacecraft about three metres high, with two 14-metre solar panels. It consists of an orbiter and a lander. The lander is approximately one metre across and 80 centimetres high. It will be attached to the side of the orbiter during the journey to Comet Churyumov-Gerasimenko. Rosetta carries 21 experiments in total, 10 of them on the lander. They will be kept in hibernation during most of its 10-year trek towards the comet.

Why does Rosetta’s cruise need to take so long? To reach Comet Churyumov-Gerasimenko, the spacecraft needs to go out into deep space as far out from the Sun as Jupiter. No launcher could possibly get Rosetta there directly. ESA’s spacecraft will gather speed from gravitational ?kicks? provided by four planetary fly-bys: one of Mars in 2007 and three of Earth in 2005, 2007 and 2009. During the trip, Rosetta will also twice pass through the asteroid belt, where a fly-by with one or more of these primitive objects is possible. A number of candidate targets have already been identified, but the final selection will be made after launch, once the amount of surplus fuel has been verified by mission engineers. During these encounters, scientists plan to switch on Rosetta’s instruments for scientific studies of these largely unexplored Solar System bodies.

Long trips in deep space include many hazards, such as extreme changes in temperature. Rosetta will leave the benign environment of near-Earth space to the dark, frigid regions beyond the asteroid belt. To manage these thermal loads, experts have done very tough pre-launch tests to study Rosetta’s endurance. For example, they have heated its external surfaces to more than 150?C, then cooled it to -150?C in the next test.

The spacecraft will be fully reactivated prior to the comet rendezvous manoeuvre in 2014. Then, Rosetta will orbit the comet ? an object only about 4 kilometres in diameter – while it cruises through the inner Solar System at 135 000 kilometres per hour. At the time of the rendezvous ? around 675 million kilometres from the Sun ? Comet Churyumov-Gerasimenko will hardly show any surface activity. This means that the characteristic ?coma? (the comet?s ?atmosphere?) and the tail will not be formed yet, because of the distance from the Sun. The comet’s tail is in fact made of dust grains and frozen gases from the comet’s surface that vaporise because of the Sun’s heat.

Over a period of six months, Rosetta will extensively map the comet’s surface, prior to selecting a landing site. In November 2014, the lander will be ejected from the spacecraft from a height which could be as low as one kilometre. Touchdown will be at walking speed, about one metre per second. Immediately after touchdown, the lander will fire a harpoon into the ground to avoid bouncing off the surface back into space, since the comet?s extremely weak gravity alone would not hold onto the lander. Operations and scientific observations on the surface will last at least a week, but may continue for many months. Besides taking close-up pictures, the lander will drill into the dark organic crust and sample the primordial ices and gases.

During and after the lander operations, Rosetta will continue orbiting and studying the comet: it will be the first spacecraft to witness at close quarters the changes taking place in a comet when the comet approaches the Sun and grows its coma and tail and then travels away from it. The trip will end in December 2015, after 12 years of adventure, when the comet has made its closest approach to the Sun and is on its way towards the outer Solar System.

Studying a comet on the spot
Rosetta’s goal is to examine the comet in great detail. The instruments on the orbiter include several cameras and spectrometers that work at different wavelengths: infrared, ultraviolet, visible and microwave. In addition, there are various other instruments to make in situ analysis. Together, they will provide, amongst other things, very high-resolution images and information about the shape, density, temperature and chemical composition of the comet. Rosetta?s instruments will analyse the gases and dust grains in the coma that forms when the comet becomes active, as well as the interaction with the solar wind.

The ten experiments on the lander will make an on-the-spot analysis of the composition and structure of the comet?s surface and subsurface material. A drilling system will take samples down to 30 centimetres below the surface and feed these to the ?composition analysers?. Other instruments will measure properties such as near-surface strength, density, texture, porosity, ice phases and thermal properties. Microscopic studies of individual grains will tell us about the texture.

Ground operations
All scientific data including those relayed from the lander will be stored on the orbiter for downlink to Earth at the next ground station contact. ESA has installed a new deep-space antenna at New Norcia, near Perth in Western Australia, as the main communications link between the spacecraft and ESOC Mission Control in Darmstadt, Germany. This 35-metre diameter parabolic antenna allows the radio signal to reach distances of more than a million kilometres from Earth. The radio signals, travelling at the speed of light, will take up to 50 minutes to cover the distance between the spacecraft and Earth.

Building Rosetta
Rosetta was selected as a mission in 1993. The spacecraft has been built by Astrium Germany as prime contractor. Major subcontractors are Astrium UK (spacecraft platform), Astrium France (spacecraft avionics), and Alenia Spazio (assembly, integration, and verification). Rosetta?s industrial team involves more than 50 contractors from 14 European countries, Canada and the United States.

Scientific consortia from institutes across Europe and the United States have provided the instruments on the orbiter. A European consortium under the leadership of the German Aerospace Research Institute (DLR) has provided the lander. Rosetta has cost ESA EUR 770 million at 2000 economic conditions. This includes the launch and the entire period of development and mission operations from 1996 to 2015. The lander and the experiments, the so-called ‘payload’, are not included since they are funded by the member states through scientific institutes.

Original Source: ESA News Release

Astronomers See a Star Before it Exploded

Image credit: Gemini
Like a doctor trying to understand an elderly patient’s sudden demise, astronomers have obtained the most detailed observations ever of an old but otherwise normal massive star just before and after its life ended in a spectacular supernova explosion.

Imaged by the Gemini Observatory and Hubble Space Telescope (HST) less than a year prior to the gigantic explosion, the star is located in the nearby galaxy M-74 in the constellation of Pisces. These observations allowed a team of European astronomers led by Dr. Stephen Smartt of the University of Cambridge, England to verify theoretical models showing how a star like this can meet such a violent fate.

The results were published in the January 23, 2004 issue of the journal Science. This work provides the first confirmation of the long-held theory that some of the most massive (yet normal) old stars in the Universe end their lives in violent supernova explosions.

“It might be argued that a certain amount of luck or serendipity was involved in this finding,” said Dr. Smartt. “However, we’ve been searching for this sort of normal progenitor star on its deathbed for some time. I like to think that finding the superb Gemini and HST data for this star is a vindication of our prediction that one day we had to find one of these stars in the immense data archives that now exist.” Click here for more details on Dr. Smartt’s ongoing supernova program.

During the last few years, Smartt’s research team has been using the most powerful telescopes, both in space and on the ground, to image hundreds of galaxies in the hope that one of the millions of stars in these galaxies will some day explode as a supernova. In this case, the renowned Australian amateur supernova hunter, Reverend Robert Evans, made the initial discovery of the explosion (identified as SN203gd) while scanning galaxies with a 12-inch (31cm) backyard telescope from his home in New South Wales, Australia in June, 2003.

Following Evans’ discovery, Dr. Smartt’s team quickly followed up with detailed observations using the Hubble Space Telescope. These observations verified the exact position of the original or “progenitor” star. Using this positional data, Smartt and his team dug through data archives and discovered that observations by the Gemini Observatory and HST contained the combination of data necessary to reveal the nature of the progenitor.

The Gemini data was obtained during the commissioning of the Gemini Multi-Object Spectrograph (GMOS) on Mauna Kea, Hawaii in 2001. These data were also used to produce a stunning high-resolution image of the galaxy that clearly shows the red progenitor star. Click here for the full resolution Gemini image.

Armed with the earlier Gemini and HST observations Smartt’s team was able to demonstrate that the progenitor star was what astronomers classify as a normal red supergiant. Prior to exploding, this star appeared to have a mass about 10 times greater, and a diameter about 500 times greater than that of our Sun. If our sun were the size of the progenitor it would engulf the entire inner solar system out to about the planet Mars.

Red supergiant stars are quite common in the universe and an excellent example can be easily spotted during January from almost anywhere on the Earth by looking at Betelgeuse, the bright red shoulder star in the constellation of Orion (see finder chart here.) Like SN2003gd, it is believed that Betelgeuse could meet the same explosive fate at any time from next week to thousands of years from now.

After SN2003gd exploded, the team observed its gradually fading light for several months using the Isaac Newton Group of telescopes on La Palma. These observations demonstrated that this was a normal type II supernova, which means that the ejected material from the explosion is rich in hydrogen. Computer models developed by astronomers have long predicted that red supergiants with extended, thick atmospheres of hydrogen would produce these type II supernovae but until now have not had the observational evidence to back up their theories. However, the fantastic resolution and depth of the Gemini and Hubble images allowed the Smartt team to estimate the temperature, luminosity, radius and mass of this progenitor star and reveal that it was a normal large, old star. “The bottom-line is that these observations provide a strong confirmation that the theories for both stellar evolution and the origins of these cosmic explosions are correct,” said co-author Seppo Mattila of Stockholm Observatory.

This is only the third time astronomers have actually seen the progenitor of a confirmed supernova explosion. The others were peculiar type II supernovae: SN 1987A, which had a blue supergiant progenitor, and SN 1993J, which emerged from a massive interacting binary star system. Click here for more details.

Dr. Smartt concludes, “Supernova explosions produce and distribute the chemical elements that make up everything in the visible Universe ? especially life. It is critical that we know what type of stars produce these building blocks if we are to understand our origins.”

Archived Gemini and HST data was critical to the success of this project. “This discovery is a perfect example of archival data’s immense value to new scientific projects,” said Dr. Colin Aspin who is the Gemini Scientist responsible for the development of the Gemini Science Archive (GSA). He continued, “this discovery demonstrates the spectacular results that can be realized by using archival data and stresses the importance of developing the GSA for future generations of astronomers.”

The Gemini Multi-Object Spectrograph used to make the Gemini observations are twin instruments built as a joint partnership between Gemini, the Dominion Astrophysical Observatory, Canada, the UK Astronomy Technology Centre and Durham University, UK. Separately, the U.S. National Optical Astronomy Observatory provided the detector subsystem and related software. GMOS is primarily designed for spectroscopic studies where several hundred simultaneous spectra are required, such as when observing star and galaxy clusters. GMOS also has the ability to focus astronomical images on its array of over 28 million pixels.

The Isaac Newton Group of Telescopes (ING) is an establishment of the Particle Physics and Astronomy Research Council (PPARC) of the United Kingdom, the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) of the Netherlands and the Instituto de Astrof?sica de Canarias (IAC) in Spain. The ING operates the 4.2 metre William Herschel Telescope, the 2.5 metre Isaac Newton Telescope, and the 1.0 metre Jacobus Kapteyn Telescope. The telescopes are located in the Spanish Roque de Los Muchachos Observatory on La Palma which is operated by the Instituto de Astrof?sica de Canarias (IAC).

Background Information:

Supernovae are among the most energetic phenomena observed in the entire Universe. When a star of more than about eight times the mass of our Sun reaches the end of its nuclear fuel reserve, its core is no longer stable from collapsing under its own immense weight. As the core of the star collapses, the outer layers are ejected in a fast-moving shock wave. This huge energy release results in a supernova that is about one billion times brighter than our Sun, and is comparable to the brightness of an entire galaxy. After destroying itself, the core of the star becomes either a neutron star or a black hole.

The team is composed of Stephen J. Smartt, Justyn R. Maund, Margaret A. Hendry, Christopher A. Tout, and Gerald F. Gilmore (University of Cambridge, UK), Seppo Mattila (Stockholm Observatory, Sweden), and Chris R. Benn (Isaac Newton Group of Telescopes, Spain).

Original Source: Gemini News Release