Spitzer Image of the Tarantula Nebula

Image credit: NASA/JPL

The latest image from the Spitzer Space Telescope is of often-photographed Tarantula Nebula. Spitzer, however, is able to pierce through the dust and material that surrounds the nebula to take a good look inside this active star-forming region. This new photograph has turned up previously hidden stars inside the nebula, as well as empty cavities of space around them – their powerful radiation blows all the dust away. Images like this will help astronomers understand the environments that form stars and get a better sense of where our own Solar System came from.

A dusty stellar nursery shines brightly in a new image from NASA’s Spitzer Space Telescope, formerly known as the Space Infrared Telescope Facility. Spitzer’s heat-sensing “infrared eyes” have pierced the veiled core of the Tarantula Nebula to provide an unprecedented peek at massive newborn stars.

The new image is available online at http://www.spitzer.caltech.edu and http://photojournal.jpl.nasa.gov/catalog/PIA05062.

“We can now see the details of what’s going on inside this active star-forming region,” said Dr. Bernhard Brandl, principal investigator for the latest observations and an astronomer at both Cornell University, Ithaca, N.Y., and the University of Leiden, the Netherlands.

Launched on August 25, 2003, from Cape Canaveral Air Force Station, Florida, the Spitzer Space Telescope is the fourth of NASA’s Great Observatories, a program that also includes Compton Gamma Ray Observatory, the Chandra X-ray Observatory and the Hubble Space Telescope. Spitzer’s state-of-the-art infrared detectors can sense the infrared radiation, or heat, from the farthest, coldest and dustiest objects in the universe.

One such dusty object is the Tarantula Nebula. Located in the southern constellation of Dorado, in a nearby galaxy called the Large Magellanic Cloud, this glowing cloud of gas and dust is one of the most dynamic star-forming regions in our local group of galaxies. It harbors some of the most massive stars in the universe, up to 100 times more massive than our own Sun, and is the only nebula outside our galaxy visible to the naked eye.

While other telescopes have highlighted the nebula’s spidery filaments and its star-studded core, none was capable of fully penetrating its dust-enshrouded pockets of younger stars.

The new Spitzer image shows, for the first time, a more complete picture of this huge stellar nursery, including previously hidden stars. The image also captures in stunning detail a hollow cavity around the stars, where intense radiation has blown away cosmic dust.

“You can see a hole in the cloud as if a giant hair dryer blew away all the gas and dust,” said Brandl.

By studying this portrait of a family of stars, astronomers can piece together how stars in general, including those like our Sun, form.

JPL manages the Spitzer Space Telescope mission for NASA’s Office of Space Science, Washington. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology in Pasadena. JPL is a division of Caltech.

Additional information about the Spitzer Space Telescope is available at http://www.spitzer.caltech.edu.

Original Source: NASA/JPL News Release

Star Mimics a Black Hole

Image credit: Chandra

Astronomers using the Australia Telescope Compact Array have found a rapidly spinning neutron star which is spitting out jets of material at nearly the speed of light. Jets like this have only been seen previously coming out of black holes, and this discovery challenges the theory that only the environment around a black hole can be so energetic. The astronomers studied Circinus X-1, an object located about 20,000 light years away, which is a bright source of X-rays. They know it’s a neutron star, but it also has these unusual characteristics.

Scientists using CSIRO’s Australia TelescopeCompact Array, a radio synthesis telescope in New South Wales, Australia, have seen a neutron star spitting out a jet of matter at very close to the speed of light. This is the first time such a fast jet has been seen from anything other than a black hole.

The discovery, reported in this week’s issue of Nature, challenges the idea that only black holes can create the conditions needed to accelerate jets of particles to extreme speeds.

“Making jets is a fundamental cosmic process, but one that is still not well understood even after decades of work,” says team leader Dr. Rob Fender of the University of Amsterdam.

“What we’ve seen should help us understand how much larger objects, such as massive black holes, can produce jets that we can see half-way across the Universe.”

The scientists, from The Netherlands, the UK and Australia, studied Circinus X-1, a bright and variable source of cosmic X-rays, over a three-year period.

Circinus X-1 lies inside our Galaxy, about 20 000 light-years from Earth, in the constellation Circinus near the Southern Cross.

It consists of two stars: a ‘regular’ star, probably about 3 to 5 times the mass of our Sun, and a small compact companion.

“We know that the companion’s a neutron star from the kind of X-ray bursts it’s been seen to give off,” says team member Dr. Helen Johnston of the University of Sydney.

“Those X-ray bursts are a sign of a star that has a surface. A black hole doesn’t have a surface. So the companion must be a neutron star.”

A neutron star is a compressed, very dense ball of matter formed when a giant star explodes after its nuclear fuel runs out. In the hierarchy of extreme objects in the Universe, it is just one step away from a black hole.

The two stars in Circinus X-1 interact, with the neutron star’s gravity pulling matter off the larger star onto the neutron star’s surface.

This ‘accretion’ process generates X-rays. The strength of the X-ray emission varies with time, showing that the two stars of Circinus X-1 travel around each other in a very elongated orbit with a 17 day period.

“At their point of closest approach, the two stars are almost touching,” says Dr. Johnston.

Since the 1970s astronomers have known that Circinus X-1 produces radio waves as well as X-rays. A large ‘nebula’ of radio emission lies around the X-ray source. Within the nebula lies the new-found jet of radio-emitting material.

Jets are believed to emerge, not from black holes themselves, but from their ‘accretion disk’ – the belt of dismembered stars and gas that a black hole drags in towards it.

In Circinus X-1 it’s likely that the accretion disk varies with the 17-day cycle, being at its most intense when the stars are at their closest point in the orbit.

The jet from Circinus X-1 is travelling at 99.8% of the speed of light. This is the fastest outflow seen from any object in our Galaxy, and matches that of the fastest jets being shot out of other complete galaxies. In those galaxies, the jets come from supermassive black holes, millions or billions of times the mass of the Sun, that lie at the centres of the galaxies.

Whatever process accelerates jets to near the speed of light, it does not rely on the special properties of a black hole.

“The key process must be one common to both black holes and neutron stars, such as accretion flow,” says Dr. Kinwah Wu of Unversity College London, UK.

Original Source: CSIRO News Release

First a Crater, then Head for the Hills

Image credit: NASA/JPL

NASA’s Spirit Rover has completed its pivoting maneuver atop its landing platform, and it’s nearly ready to roll out onto the Martian surface. Mission scientists have decided that the rover’s first target will be a relatively nearby 200-metre wide impact crater, which is approximately 250 metres northeast of the landing site. A crater like this is a convenient hole in the ground which allows the rover to look back into Martian history to see if there are sedimentary layers; a sure indication that there was standing water in the past. After studying the crater, Spirit will make for a set of hills approximately 3 kilometres away; although, that could be outside its range.

NASA’s Spirit has begun pivoting atop its lander platform on Mars, and the robot’s human partners have announced plans to send it toward a crater, then toward some hills, during the mission.

Determining exactly where the spacecraft landed, in the context of images taken from orbit, has given planners a useful map of the vicinity. After Spirit drives off its lander and examines nearby soil and rocks, the scientists and engineers managing it from NASA’s Jet Propulsion Laboratory, Pasadena, Calif., intend to tell it to head for a crater that is about 250 meters (about 270 yards) northeast of the lander.

“We’ll be careful as we approach. No one has ever driven up to a martian crater before,” said Dr. Steve Squyres of Cornell University, Ithaca, N.Y., principal investigator for the science instruments on Spirit and on its twin Mars Exploration Rover, Opportunity.

The impact that dug the crater about 200 meters (about 220 yards) wide probably flung rocks from as deep as 20 to 30 meters (22 to 33 yards) onto the surrounding surface, where Spirit may find them and examine them. “It will provide a window into the subsurface of Mars,” Squyres said.

Craters come in all sizes. The main scientific goal for Spirit is to determine whether the Connecticut-sized Gusev Crater ever contained a lake. Taking advantage of the nearby unnamed crater for access to buried deposits will add to what Spirit can learn from surface materials near the lander. After that, if all goes well, the rover will head toward a range of hills about 3 kilometers (2 miles) away for a look at rocks that sit higher than the landing neighborhood’s surface. That distance is about five times as far as NASA’s mission- success criteria for how far either rover would drive. The highest hills in the group rise about 100 meters (110 yards) above the plain.

“I cannot tell you we’re going to reach those hills,” Squyres said. “We’re going to go toward them.” Getting closer would improve the detail resolved by Spirit’s panoramic camera and by the infrared instrument used for identifying minerals from a distance.

First, though, comes drive-off. Overnight Monday to Tuesday, Spirit began rolling. It backed up 25 centimeters (10 inches), turned its wheels and pivoted 45 degrees.

“The engineering team is just elated that we’re driving,” said JPL’s Chris Lewicki, flight director. “We’ve cut loose our ties and we’re ready to rove.” After two more pivots, for a total clockwise turn of 115 degrees, Spirit will be ready for driving onto the martian surface very early Thursday morning, according to latest plans.

Engineers and scientists have determined where on the martian surface the lander came to rest. NASA’s Mars Odyssey orbiter was used in a technique similar to satellite-based global positioning systems on Earth to estimate the location of the landing site, said JPL’s Joe Guinn of the rover mission’s navigation team. Other researchers correlated features seen on the horizon in Spirit’s panoramic views with hills and craters identifiable in images taken by Mars Global Surveyor and Odyssey. “We’ve got a tremendous vista here with all kinds of features on the horizon,” said JPL’s Dr. Tim Parker, landing site-mapping geologist.

The spacecraft came to rest only about 250 to 300 meters (270 to 330 yards) southeast of its first impact. Transverse rockets successful slowed horizontal motion seconds before impact, said JPL’s Rob Manning, who headed development of the entry, descent and landing system. The spacecraft, encased in airbags, was just 8.5 meters (27.9 feet) off the ground when its bridle was cut for the final freefall to the surface. It first bounced about 8.4 meters (27.6 feet) high, then bounced 27 more times before stopping.

Analysis of Spirit’s landing may aid in minor adjustments for Opportunity, on track for landing on the opposite side of Mars on Jan. 25 (Universal Time and EST; 9:05 p.m. Jan. 24, PST).

JPL, a division of the California Institute of Technology in Pasadena, manages the Mars Exploration Rover project for NASA’s Office of Space Science, Washington. For more information about NASA and the Mars mission on the Internet, visit http://www.nasa.gov. Additional information about the rover project is available from NASA’s JPL at http://marsrovers.jpl.nasa.gov and from Cornell University at http://athena.cornell.edu.

Original Source: NASA/JPL News Release

Bush: Human Beings are Heading Into the Cosmos

Image credit: Whitehouse.gov

As predicted for several months, US President George W. Bush announced his plan for the future human exploration of space. Bush was joined by NASA administrator Sean O’Keefe and the press briefing was introduced by the commander of Expedition 8, Michael Foale – currently aboard the International Space Station.

Under the new plan, the United States would complete its work on the International Space Station by 2010, which is being developed by 15 countries, and then retire the space shuttle fleet. In tandem with this, NASA will develop a new program of human space exploration which will eventually return humans to the Moon.

As predicted for several months, US President George W. Bush announced his plan for the future human exploration of space. Bush was joined by NASA administrator Sean O’Keefe and the press briefing was introduced by the commander of Expedition 8, Michael Foale – currently aboard the International Space Station.

Under the new plan, the United States would complete its work on the International Space Station by 2010, which is being developed by 15 countries, and then retire the space shuttle fleet. In tandem with this, NASA will develop a new program of human space exploration which will eventually return humans to the Moon.

The first robotic explorers would reach the Moon in 2008; human explorers would follow by 2015-2020. Although Bush was expected to announce a permanent lunar base, no details were given. Bush hinted, but didn’t provide any details about follow-on human missions to Mars.

The plans call for a new kind of spacecraft, called the Crew Exploration Vehicle; a general purpose spacecraft which would be capable of servicing the International Space Station and reaching locations beyond low-Earth orbit, such as the Moon, asteroids, and the Lagrange points (stable places in space which are balanced between the gravity of two objects, such as the Earth and Moon).

NASA has said that this new vehicle will be dramatically different from the Orbital Space Plane, which NASA was developing as a replacement spacecraft to travel to and from the International Space Station. NASA had originally intended to award contracts for the OSP in 2004, which would eventually cost $15 billion US.

In order to finance this new plan, the president will be asking Congress in February to provide NASA with an additional $1 billion US in 2005, spread out over five years. Additional funds for the program would come from reorganizing NASA’s existing projects, like retiring the space shuttle by the end of the decade.

Maintaining and launching the space shuttle costs approximately $4 billion a year and the International Space Station costs $1 billion a year. It’s not clear what effect winding down the shuttle will have on the thousands of workers and contractors employed by the program; although, Bush did say that it would be “with existing programs and personnel.”

Bush called this new initiative a “journey, not a race”, and encouraged international partners to join the United States in exploring the solar system with human beings.

He said that the next step will be the formation of a special commission to “explore the vision I have outlined today”. This commission, led by former Air Force Secretary Peter Aldridge, will deliver a report to President Bush within four months.

More background on the new space initiative is available here.

More Radio Shows to Listen To

A mentioned a few months ago that I always tune a couple of science radio programs through the Internet: CBC’s Quirks and Quarks, and NPR’s Talk of the Nation Science Friday. Since then, I’ve turned up a few more shows to listen to on a regular basis. One is PlanetEarthRadio.com, which has dedicated streams just for space and astronomy. Another is the science programs on BBC Radio 4 which have been nicely archived for your listening pleasure. And Australia’s ABC has The Science Show.

My new favorite, however, is The Space Show, hosted by Dr. David Livingston. Each program is a 90-minute interview with a space scientist or advocate. I’m astonished and jealous at the caliber of guests Dr. Livingston has been able to get to interview. Give it a listen.

Do you have any other suggestions for radio shows to listen to? Send them in… I’m all ears.

Fraser Cain
Publisher
Universe Today

Binary Systems Could Create Most Nebulae

Image credit: Hubble

New research from the National Optical Astronomy Observatory may help to explain the formation and shape of many planetary nebulae. The culprit might just be binary star systems, where two stars orbit a common centre of gravity. Astronomers believe that planetary nebulae are caused when white dwarf stars slough off their outer layers, but they couldn’t explain how the nebulae could form jets of material or unusual lobes and prominences. A second star orbiting the dying white dwarf could whip up the outer layers into the strange shapes astronomers see.

Near the end of its lifetime, a star like the Sun ejects its outer layers into space, producing a hazy cloud of material called a planetary nebula. The complex shapes and dazzling colors of planetary nebulae make them some of the most popular objects in the night sky, for both amateur observing and scientific study.

New research suggests that many if not most of the stellar corpses at the centers of these wildly varied cosmic objects have companion stars, a surprising finding that will influence how astronomers explain their origins.

Astronomers used the Wisconsin-Indiana-Yale-NOAO 3.5-meter telescope at the National Science Foundation?s Kitt Peak National Observatory to take radial velocity measurements of 11 central stars of planetary nebulae (PNe), looking for the telltale, repeatable wobble that indicates the presence of a companion’s gravitational influence. This technique is also used to search for extrasolar planets around nearby stars. Ten of the 11 central stars of the PNe in the recent study showed clear evidence for radial velocity oscillations.

?If our current results are confirmed with further observations, we could be at the start of a revolution in the study of the origin of planetary nebulae,? says Howard Bond of the Space Telescope Science Institute in Baltimore, the principal investigator of the results presented today in Atlanta at the 203rd meeting of the American Astronomical Society. ?If these nebulae arise from binary stars, it implies a very different origin for these systems than what most astronomers had thought.?

It might be expected that nebulae ejected from spherical stars would be spherical, but many years of telescope observations show this not to be the case. In fact, most PNe are either elliptical or have pronounced lobes, often accompanied by jet-like structures.

There is general agreement that in order to eject gas with these observed morphologies, single stars would have to rotate rather rapidly or have reasonably strong magnetic fields, which themselves are the product of stellar rotation. However, the stars that most commonly eject PNe are large, bloated giants, indisposed to fast rotation.

?The most direct way to spin up these vast, fluffy stars is by the action of an orbiting companion. In extreme cases, as a red giant star gradually increases in size, it may actually swallow a companion star, which would then spiral down inside the giant and eventually eject its outer layers,? explains Orsola De Marco, an astronomer at the American Museum of Natural History (AMNH) in New York and the lead author of the publication reporting the first results of this project. ?Despite this, the mainstream astronomical view remains rooted in single star theories for the evolution of planetary nebulae, supported by the small percentage of planetary nebulae central stars that that were previously known to be binaries. However, our new research threatens to turn this viewpoint on its head.?

Astronomers currently believe that the majority of stars?those that begin with no more than eight times the mass of our Sun?end their lives by ejecting a planetary nebula and becoming a cosmic ember called a white dwarf. However, the new results from the WIYN telescope suggest that the story may be more complicated, in that an interaction with a companion star may be required to produce most planetary nebulae.

?We need more data to determine the exact periods of the binary central stars, since this is the only way to be sure of their binarity and eliminate other possible physical sources that could simulate the stellar wobble,? De Marco says. ?We are reasonably sure that these variations are due to binarity, but determination of their precise periods is the only way to be sure. We must also increase the size of our sample.?

Among the objects observed in this initial study are Abell 78, NGC 6891, NGC 6210, and IC 4593. The new radial velocity measurements were taken by the WIYN Hydra spectrographic instrument.

A previously released Hubble Space Telescope image of NGC 6210 is available at: http://hubblesite.org/newscenter/newsdesk/archive/releases/1998/36/image/a

Co-authors of this work are Dianne Harmer of the National Optical Astronomy Observatory (NOAO) in Tucson, AZ, and Andrew Fleming of Michigan Technological University in Houghton, MI, an NSF Research Experiences for Undergraduates (REU) student at AMNH during the summer of 2003.

These results (Abstract 127.03 in the AAS meeting program) will be discussed in an oral session that begins at 10:00 a.m. on Thursday, January 8, in Regency VI. This research has been accepted for publication in the February 1, 2004, issue of Astrophysical Journal Letters.

Images of other planetary nebulae taken by Kitt Peak telescopes are available in the NOAO Image Gallery at:

http://www.noao.edu/image_gallery/planetary_nebulae.html
and
http://www.noao.edu/outreach/aop/observers/pn.html.

The Wisconsin-Indiana-Yale-NOAO (WIYN) 3.5-meter telescope is located at Kitt Peak National Observatory, 55 miles southwest of Tucson, AZ. Kitt Peak National Observatory is part of the National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under a cooperative agreement with the National Science Foundation (NSF).

Original Source: NOAO News Release

New Method for Finding Exploding White Dwarf Stars

Image credit: SDSS

Researchers at the University of Washington have developed a new method for studying unusual astronomical pairings: pre-cataclysmic variables – a white dwarf and red dwarf tightly orbiting one another. Before this new method, only 100 of these objects had been discovered, but this new method has turned up another 400 in data from the Sloan Digital Sky Survey. When the two stars get close enough, material from the red dwarf streams onto the white dwarf and deposits on the surface. This heats up the white dwarf and can cause it to explode as a supernova.

Until recently, astrophysicists studying exotic star systems pairing a white dwarf and a red dwarf in very close proximity didn’t have much to go on.

Just five years ago, scientists knew of fewer than 100 such systems, called pre-cataclysmic variables. But today a team of University of Washington astronomers said that, with data from the Sloan Digital Sky Survey (SDSS), the number has now grown to nearly 500.

That is significant because researchers are now able to study white dwarf and red dwarf stars at different stages of their life cycles, giving scientists the ability to compare them and develop an understanding of how the systems evolve and change over the course of billions of years, possibly becoming supernovas.

“We’ve never had the opportunity to study a variety of these systems in detail before now,” said Nicole Silvestri, a University of Washington astronomy researcher. Using this large sample from the SDSS, Silvestri and her colleagues believe they can begin to answer some of the long-standing questions in astronomy about pre-cataclysmic variables and their eventual end products, cataclysmic variable systems.

Silvestri is lead author of a poster presentation on the findings presented today (January 6, 2004) at the American Astronomical Society’s annual meeting in Atlanta. Co-authors of the project are Suzanne Hawley and Paula Szkody of the University of Washington’s Astronomy Department. The National Science Foundation supported the research.

Pre-cataclysmic variable systems pair a red dwarf star about one-tenth the size of our sun and a dense remnant of a star, called a white dwarf, in close orbit around each other. When the two stars are close enough, orbiting one another in less than four hours, the gravity of the denser white dwarf is able to pull material off of the less dense red dwarf. Material from the red dwarf forms a disk around the white dwarf that eventually accumulates on the surface of the white dwarf. (Variability refers to the changing amount of light coming from the stars as they orbit each other).

As the white dwarf gains mass, many small explosions, called cataclysmic events, occur on the surface of the white dwarf. If the white dwarf gravity gets to a critical point, it can collapse catastrophically. This heats up the white dwarf tremendously and may cause it to explode as a supernova.

Pre-cataclysmic variables found so far in the SDSS data have orbital periods of between four and 12 hours and are not close enough to have begun transferring material between the stars.

Silvestri said the evolution of a pre-cataclysmic variable to a cataclysmic variable takes billions of years and studying just one system as it evolves would be impossible. But with nearly 500 pre-cataclysmic variables to study, “A dataset of this size will allow us to take snapshots in time of the evolution of the system,” she said. “This will allow the researchers to study how properties of each star change as the pair draw closer to each other, something that until now, has never been investigated.”

Silvestri and her colleagues are still at a loss to explain one oddity in the research. Thousands of isolated white dwarfs have been observed and hundreds of them have been found to be magnetic. And many white dwarfs in cataclysmic variables are magnetic. But not one of the white dwarfs observed in the pre-cataclysmic variable systems is magnetic.

“This makes the origin of magnetic cataclysmic variables (known as polars), which do contain magnetic white dwarfs, exceedingly mysterious,” added SDSS researcher Suzanne Hawley of the University of Washington.

“That’s a question we’re still trying to find an answer to,” Silvestri said. “How do you get a magnetic white dwarf in a cataclysmic variable if it doesn’t originate in one of these pairs that is evolving toward being a cataclysmic variable?” The University of Washington team, James Liebert of the University of Arizona and others are preparing a paper on that finding for the Astronomical Journal.

Original Source: SDSS News Release

Rosetta Prepares for Mission to Comet 67P/Churyumov-Gerasimenko

Image credit: ESA

The European Space Agency’s comet chasing spacecraft, Rosetta, is being prepared for its trip into space? again. After a series of technical problems and missed opportunities, the spacecraft is now being targeted to chase down Comet 67P/Churyumov-Gerasimenko; it will reach the comet and go into orbit in August 2014. The spacecraft will map the surface of the comet in great detail and then actually land on the surface and provide high resolution images from the “ground”.

ESA?s comet chaser will soon be heading towards a new target, known as 67P/Churyumov-Gerasimenko, but the mission team is confident that a rich scientific bonanza awaits when Rosetta arrives at its destination in the summer of 2014.

One year ago, scientists around the world were eagerly awaiting the start of Rosetta?s historic voyage to orbit and land on a small comet called 46P/Wirtanen. Then, following a mishap with an Ariane 5 launch vehicle, the spacecraft?s odyssey was put on hold and mission planners began to search for other comets that would be within Rosetta?s range.

Following careful analysis of the available objects and associated launch constraints for each option, the ESA Science Programme Committee eventually accepted the recommendation to send Rosetta to another periodic intruder into the inner Solar System, comet Churyumov-Gerasimenko.

Under the revised flight plan, the hardy spacecraft will now make one flyby of Mars and three flybys of Earth en route to the comet. This circuitous trek will enable Rosetta to make two excursions into the main asteroid belt before its rendezvous with the fast-moving cosmic iceberg.

At present, the amount of science that can be conducted during the 10-year trek to comet Churyumov-Gerasimenko remains uncertain. Some scientific observations of the Red Planet will be possible during the Mars encounter, and there is likely to be at least one opportunity to study a main belt asteroid at close quarters. A number of possible candidates have already been identified, but the final selection will be made after launch, once the mission team has determined how much surplus fuel is available on the spacecraft.

However, the most exciting phase of Rosetta?s 11-year odyssey will come when it brakes into orbit around Churyumov-Gerasimenko in August 2014. From an altitude of just a few kilometres, its cameras will be able to map the entire pockmarked surface of the icy nucleus at high resolution and search for suitable landing sites.

Once the surface of the comet?s nucleus has been surveyed in unprecedented detail and a safe landing site has been selected, the Rosetta lander will separate from the orbiter and slowly descend to the pristine surface. If all goes according to plan, the lander will anchor itself to the icy crust and begin a detailed survey of its surroundings.

Over a period of several weeks, a treasure trove of data from the nine instruments on the lander will be sent back to Earth via the Rosetta orbiter. During its historic foray, the lander will return close-up pictures of the comet?s nucleus, drill into the dark organic crust, and sample the primordial ices and gases. Even the internal structure of the dirty snowball will be probed as radio signals from the orbiter pass through the nucleus to the lander and back again. For the scientists, this ?ground truth? data will provide invaluable validation of the remote observations sent back by the orbiter as its skims over the undulating surface of the small ice world.

Meanwhile, the orbiter will continue to monitor the dramatic changes in the nucleus that take place during its headlong plunge towards the inner Solar System. Over a period of about 18 months, the 11 experiments on the Rosetta orbiter will examine every aspect of the comet?s behaviour during its headlong plunge towards the inner Solar System.

Since Churyumov-Gerasimenko typically becomes much more active than Wirtanen as it approaches the Sun, scientists expect to observe at close quarters for the first time the remarkable transformation of a comet from a tranquil iceberg into a world of turmoil. In particular, as its ices sublimate, bright jets will appear, ejecting gas and dust into space to create a coma and a distinctive tail that stretches vast distances in the anti-sunward direction.

Despite its generally more active nature, the dust environment close to the comet is probably little more hazardous for the spacecraft than it would be in the vicinity of comet Wirtanen. Churyumov-Gerasimenko?s larger perihelion distance means that its nucleus is heated less strongly by the Sun, so limiting the output of gas-laden dust that could threaten the orbiter.

According to ESA?s Rosetta project scientist, Gerhard Schwehm, it should be an exciting time for everyone concerned.

?Ground observations have shown that the comet becomes active at around 3 AU (about 450 million km from the Sun),? he said. ?We see a lot of jets and surface activity with considerable structure in the coma.?

?Since Churyumov-Gerasimenko has only made a few passes through the inner Solar System, it is still a fairly fresh, active comet, which produces a lot of gas and dust. By flying alongside it for more than a year, we shall be able to observe the dramatic transformation that takes place as it is warmed by the Sun. It will also be intriguing to see how the activity dies down after it passes perihelion and begins the outward leg of its orbit.?

?Working in unison, the lander and the orbiter will revolutionise our understanding of comets,? said Schwehm. ?They will lead to amazing discoveries about the most primitive building blocks of the Solar System.?

In particular, the enormous flood of data returned during Rosetta?s remarkable voyage will provide new insights into such fundamental mysteries as the formation of Earth?s oceans and the origin of life.

It may even help the human race to survive in the long term. By transforming our understanding of the Solar System?s icy wanderers, Rosetta will give us vital insights about how to respond should we find a comet on a collision course with the Earth.

Rosetta?s unique odyssey of exploration will terminate in December 2015, six months after the comet passes perihelion and begins its retreat to the more frigid regions of Jupiter?s realm. After a dramatic saga lasting almost 12 years, the curtain will fall on the most ambitious scientific mission ever launched by Europe.

But, for the scientists, the work will only just be beginning.

Original Source: ESA News Release

Sea Launches Sends Telstar 14/Estrela do Sul 1 Into Orbit

Image credit: Boeing

Sea Launch successfully launched the Telstar 14/ Estrela do Sul 1 communications satellite into orbit over the weekend. The Zenit 3SL rocket lifted off from the floating Sea Launch platform on January 10 at 0413 UTC (11:13 pm EST January 11), and the dual satellite separated from the upper stage shortly after that. The satellite will provide television, data, and communication services to the Americas and the North Atlantic Ocean.

Sea Launch Company successfully deployed Loral?s Telstar 14/Estrela do Sul 1 communications satellite into orbit tonight. All systems aboard the Space Systems/Loral 1300-series spacecraft are reported in excellent condition.

The Sea Launch Zenit-3SL rocket lifted off at 8:13 pm PDT (4:13 GMT, January 11) from the Odyssey Launch Platform, positioned at 154 degrees West Longitude, on the Equator. All systems performed nominally throughout the flight. The Block DM-SL upper stage inserted the 4,694 kg (10,350 lb) spacecraft into a high perigee geosynchronous transfer orbit right on target. As planned, a ground station in Western Australia received the spacecraft?s first signal, shortly after spacecraft separation. The spacecraft?s final orbital position will be 63 degrees West Longitude.

Jim Maser, president and general manager of Sea Launch, said after completion of the mission, ?This is the first launch of the year for the industry and it?s a great way to start the year for Sea Launch, for Loral Space & Communications and for the industry. This is our second mission for our Loral customer and the first of three Loral missions we plan to complete early this year.?

The Telstar 14/Estrela do Sul 1 satellite was built by Space Systems/Loral and will be operated by Loral Skynet do Brasil. The spacecraft carries 41 high-powered Ku-band transponders with five unique and interconnecting coverage beams. The satellite will serve growing markets such as broadcast video and cable programming, Internet backbone connectivity, VSAT data and other telecommunications services. More than fifty percent of the satellite?s power will be focused on Brazil, providing dedicated Ku-band solutions for the Brazilian marketplace. The satellite?s other beams will cover the Americas and the North Atlantic Ocean, where Connexion by Boeing? will use the satellite to support its Internet-to-aircraft service.

Sea Launch Company, LLC, headquartered in Long Beach, Calif., is a world leader in providing heavy-lift commercial launch services. This international partnership offers the most direct and cost-effective route to geostationary orbit. With the advantage of a launch site on the Equator, the reliable Zenit-3SL rocket can lift a heavier spacecraft mass or provide longer life on orbit, offering best value plus schedule assurance. For additional information and images of this successfully completed mission, visit the Sea Launch website at: www.sea-launch.com

Original Source: Boeing News Release

Panoramic View of Mars

Image credit: NASA/JPL

Mission controllers have released the first panoramic 360-degree view of the Martian landscape taken by the Spirit rover. The colour panorama is a mosaic stitched together from 225 separate images taken by Spirit’s panoramic camera. Not only is it pretty, but it’s a handy tool for the team’s scientists to get an understanding of all the terrain around the rover so they can start prioritizing their targets. One of their greatest interests is how the ground near the rover folded up like a carpet when the lander retracted the airbag. This was totally unexpected, and still a bit of a mystery. Spirit is expected to roll off the lander within two days.

The first 360-degree color view from NASA’s Spirit Mars Exploration Rover presents a range of tempting targets from nearby rocks to hills on the horizon.

“The whole panorama is there before us,” said rover science- team member Dr. Michael Malin of Malin Space Science Systems, San Diego. “It’s a great opening to the next stage of our mission.”

Spirit’s flight team at NASA’s Jet Propulsion Laboratory, Pasadena, Calif., continues making progress toward getting the rover off its lander platform, but expected no sooner than early Thursday morning. “We’re about to kick the baby bird out of its nest,” said JPL’s Kevin Burke, lead mechanical engineer for the rover’s egress off the lander.

The color panorama is a mosaic stitched from 225 frames taken by Spirit’s panoramic camera. It spans 75 frames across, three frames tall, with color information from shots through three different filters. The images were calibrated at Cornell University, Ithaca, N.Y., home institution for Dr. Jim Bell, panoramic camera team leader.

Malin said, “Seeing the panorama totally assembled instead of in individual pieces gives a much greater appreciation for the position of things and helps in developing a sense of direction. I find it easier to visualize where I am on Mars when I can look at different directions in one view. For a field geologist, it’s exactly the kind of thing you want to look at to understand where you are.”

Another new image product from Spirit shows a patch of intriguing soil near the lander in greater detail than an earlier view of the same area. Scientists have dubbed the patch “Magic Carpet” for how some soil behaved when scraped by a retracting airbag.

“It has been detached and folded like a piece of carpet sliding across the floor,” said science-team member Dr. John Grotzinger of Massachusetts Institute of Technology, Cambridge.

Spirit’s next step in preparing to drive onto the surface of Mars is to sever its final connection with the lander platform by firing a cable cutter, which Burke described as “an explosive guillotine.” The planned sequence after that is a turn in place of 115 degrees clockwise, completed in three steps over the next two days. If no obstacles are seen from images taken partway through that turn, drive-off is planned toward the northwestern compass point of 286 degrees.

Spirit landed on Mars Jan. 3 after a seven-month journey. Its task is to spend the next three months exploring rocks and soil for clues about whether the past environment in Gusev Crater was ever watery and suitable to sustain life. Spirit’s twin Mars Exploration Rover, Opportunity, will reach Mars Jan. 24 PST (Jan. 25 Univeral Time and EST) to begin a similar examination of a site on a broad plain called Meridiani Planum, on the opposite side of the planet from Gusev Crater.

NASA JPL, a division of the California Institute of Technology, Pasadena, manages the Mars Exploration Rover project for NASA’s Office of Space Science, Washington. For information about NASA and the Mars mission on the Internet, visit: http://www.nasa.gov. Additional information about the project is available on the Internet at: http://marsrovers.jpl.nasa.gov. Mission information is also available from Cornell University, at: http://athena.cornell.edu.

Original Source: NASA/JPL News Release