Martian Crater Could Have Swallowed Beagle 2

Image credit: Malin

Lord Sainsbury, the UK Minister of Science and Technology reinforced today that they haven’t given up hope on Beagle 2, and continue to be optimistic that the lander will be found. A “tiger team” of engineers and scientists are working through all the scenarios that could help to explain what’s wrong with Beagle 2 (other than it’s all smashed up on the Martian surface). One theory is that the lander might have fallen into a kilometre-sized crater which was in the landing zone; although, the chances of this happening are pretty remote.

The latest attempts to communicate with Beagle 2 via the Lovell Telescope at Jodrell Bank and the Mars Odyssey spacecraft have been unsuccessful. However, the Beagle 2 team has not given up hope and continues to be optimistic that efforts to contact the lander will eventually be successful.

This message was also reinforced by Lord Sainsbury, UK Minister for Science and Innovation, who this morning joined members of the Beagle 2 team to answer questions about the status of the project.

“While we’re disappointed that things have not gone according to plan, we are determined that the search should go on, both the search to make contact with Beagle 2 and also (the search) to answer the long term question about whether there is life on Mars,” said Lord Sainsbury.

“There’s clearly still a good opportunity to make contact with Beagle 2 with Mars Express when it comes into action, and that has to be the first priority at this point. I think everything is being done by the ‘tiger team’ in Leicester to make contact with Beagle 2 and I want to wish them every success in their efforts.”

“We are looking at a number of possible failure modes that we might do something about,” said Dr. Mark Sims, Beagle 2 mission manager from the University of Leicester.

“We are working under the assumption that Beagle 2 is on the surface of Mars and for some reason cannot communicate to us. In particular, we’re looking at two major issues. One is communications, and there are also related timing and software issues.

“We’ve got a few more Odyssey contacts, the last one being on 31 December. Then we have four contacts with Mars Express already pre-programmed into Beagle, assuming the software is running, on 6, 12, 13 and 17. The 6 and 12 are when Mars Express is manoeuvring into its final orbit, so they are not optimum for Beagle 2 communications. The 13th and 17th are very good opportunities for Mars Express.”

According to Dr. Sims, one of the scenarios the team was investigating – a timer and hardware reset – now seems unlikely, and can probably be ruled out. However, other possible slips of the onboard time may have been caused by software or problems of copying data between various parts of memory. Possibly, all of the stored command times have been lost.

“None of these can yet be eliminated,” he said.

After the tenth contact attempt, Beagle 2 will move into communication search mode 1 (CSM 1), taking advantage of the ability of the software on board Beagle 2 to recognise when dawn and dusk occur on Mars by measuring the current feeding from the solar arrays.

“When we get into CSM 1 mode, Beagle 2 will start putting additional contacts on its time line, independent of the clock value,” said Mark Sims. “This will happen after 31 December.”

The team is also looking at sending blind commands to Beagle 2. This is helped by Beagle going into CSM 1 mode.

“The team has come up with a method of fooling the receiver into accepting commands without having to talk back to the orbiter,” said Dr. Sims. “We have an agreement with JPL to reconfigure Odyssey to provisionally attempt this on 31 December, the last programmed Odyssey pass.”

Malin Space Science Systems has also provided the Beagle 2 team with a picture of the landing site taken by the camera on Mars Global Surveyor 20 minutes after the spacecraft’s scheduled touchdown. It shows that the weather was quite good on the day Beagle landed, so it was unlikely to be a factor in the descent. The next opportunity to image the landing site with Mars Global Surveyor will not be until 5 January.

The image showing the centre of Beagle 2’s landing ellipse also shows a 1 km wide crater. There is just an outside possibility that the lander could have touched down inside this crater, resulting in problems caused by steep slopes, large number of rocks or disruption to communication from the lander. This image is now available on the Beagle 2 and PPARC Web sites (see link on the right hand side).

While the Lander Operations Control Centre in Leicester continues its efforts to communicate with the Beagle 2, Lord Sainsbury took the opportunity to inform the media that the UK government is keen to continue the innovative robotic exploration effort begun with the lander.

“Long term we need to be working with ESA to ensure that in some form there is a Beagle 3 which takes forwards this technology,” he said. “I very much hope that the Aurora programme, which is now being developed by ESA, will take forward this kind of robotic exploration.

“We’ve always recognised that Beagle 2 was a high risk project, and we must avoid the temptation in future to only do low risk projects.

“I’d like to use this opportunity to add my thanks to all those helping our efforts to make contact with Beagle 2. I think the amount of international collaboration one gets on these occasions is very, very impressive and very encouraging to the team.”

“We should not ignore the importance of Mars Express, which has three British-designed instruments on board and which looks set for success,” he added.

“Finally, can I use this opportunity to wish the Americans every success with its two Mars Exploration Rovers, Spirit and Opportunity.”

Original Source: PPARC News Release

Book Review: Rocket Man

In his newest book, Rocket Man, David Clary took on the challenge of describing the person that was Robert Goddard the father of the rocket program in the United States. Through an excellent chronological depiction of the events and people of Goddard’s life, Mr. Clary presents significant moments and actions in an effort to give a sense of his personality. Mr. Clary acknowledges that he was quite hampered by the efforts of Goddard’s retinue who had filtered and moulded material so as to fit only their desired image. Without giving his own conclusions, Mr. Clary presents a very readable passage on Goddard’s life.

The image that Mr Clary portrays is of a very bright and capable man who accomplished amazing feats yet whose personality might have been as much a hindrance to achieving space travel as it was in driving it forward. Paramount in this was Goddard’s belief that rocketry was his and only his domain. Parties showing any interest in helping technically were considered interlopers or trespassers and dealt with disparagingly. The advantage of this was that there was one focal point for rocketry in the United States. The detriment to this was that Goddard had to become a specialist in many related fields such as chemistry (e.g. obtaining liquid oxygen) and metallurgy (e.g. constructing nozzles and chambers) and also disparate fields such as publicity and marketing. It seems that by spreading himself across all this activities and protecting his fiefdom meant Goddard was unable to progress on those tasks which his natural abilities favoured.

There were two other consequences to being this type of generalist. One is that Goddard treated the activities as a hobbyist. For example, Mr Clary describes Goddard as wanting his office by his men in the machinist’s shop where Goddard would build mock ups by hand soldering tin cans and metal pieces. The other consequence is that Goddard seemed incapable of setting an achievable goal and then preparing a path to reach this goal. Much can be argued that this is typical whenever a person is at the forefront of a new field and is trying to advance it. However getting support for his project without clearly showing either plans or progress appears to have alienated potential supporters. Nevertheless, Mr. Clary does note that “Goddard had received more money for his research than any other civilian scientist for a single project before World War II ” And considering much of this was granted during the worldwide depression of the 1920’s, this is no small feat.

This book does give a glimpse of the person that was Robert Goddard. By listing many of the significant events of his life the reader can draw an impression of who this man was. However, as Clary clearly acknowledges, so much of the available information regarding Goddard has been purposely manipulated that Goddard the man is difficult to pinpoint. In consequence, Mr. Clary’s writing reads like a list of events woven together with text. Further, this joining text drifts and can seem a bit superfluous at times. Yet, the reader does get a flavour of who the rocket man was and especially of the challenges they faced.

Note that this book describes the man. There is little information on Goddard’s technical activities however it does have many references to publication with this information.

Rocket Man is an enjoyable read and will tell you something of Goddard and much of his trials and tribulations he faced as he pushed forward the new field of rocketry. Upon finishing the book, I couldn’t help but see a similarity between Goddard, his rocket Nell and his supporters the Guggenheims with today’s Burt Rutan, his vehicle SpaceShipOne and his supporter Paul Allen. I hope their visions come to fruition in a more auspicious manner than that of Goddard’s.

Review by Mark Mortimer

More Information: Amazon.com

Young Gas Giants Have to Fight to Survive

Image credit: ESA

Planet hunters have found more than 30 stars with gas giants in a tight orbit. This orbit seems to be caused by a race between a young gas giant and the star’s planetary disk during early formation of the star system. It’s too hot for them to form in their tight orbit; instead it’s believed they’re formed further out and then slowly pushed into the star by material in the new star system. In some cases the planet is gobbled up by the star, while sometimes the planet consumes the early planetary disk of material and survives.

Of the first 100 stars found to harbor planets, more than 30 stars host a Jupiter-sized world in an orbit smaller than Mercury’s, whizzing around its star in a matter of days (as opposed to our solar system where Jupiter takes 12 years to orbit the Sun). Such close orbits result from a race between a nascent gas giant and a newborn star. In the October 10, 2003, issue of The Astrophysical Journal Letters, astronomers Myron Lecar and Dimitar Sasselov showed what influences this race. They found that planet formation is a contest, where a growing planet must fight for survival lest it be swallowed by the star that initially nurtured it.

“The endgame is a race between the star and its giant planet,” says Sasselov. “In some systems, the planet wins and survives, but in other systems, the planet loses the race and is eaten by the star.”

Although Jupiter-sized worlds have been found orbiting incredibly close to their parent stars, such giant planets could not have formed in their current locations. The oven-like heat of the nearby star and dearth of raw materials would have prevented any large planet from coalescing. “It’s a lousy neighborhood to form gas giants,” says Lecar. “But we find a lot of Jupiter-sized planets in such neighborhoods. Explaining how they got there is a challenge.”

Theorists calculate that so-called “hot Jupiters” must form farther out in the disk of gas and dust surrounding the new star and then migrate inward. A challenge is to halt the planet’s migration before it spirals into the star.

A Jupiter-like world’s migration is powered by the disk material outside the planet’s orbit. The outer protoplanetary disk inexorably pushes the planet inward, even as the planet grows by accreting that outer material. Lecar and Sasselov showed that a planet can win its race to avoid destruction by eating the outer disk before the star eats it.

Our solar system differs from the “hot Jupiter” systems in that the race must have ended quite early. Jupiter migrated for only a short distance before consuming the material between it and the infant Saturn, bringing the King of Planets to a halt. If the protoplanetary disk that birthed our solar system had contained more matter, Jupiter might have lost the race. Then it and the inner planets, including Earth, would have spiraled into the Sun.

“If Jupiter goes, they all go,” says Lecar.

“It’s too early to say that our solar system is rare, because it’s easier to find ‘hot Jupiter’ systems with current detection techniques,” says Sasselov. “But we certainly can say we’re fortunate that Jupiter’s migration stopped early. Otherwise, the Earth would have been destroyed, leaving a barren solar system devoid of life.”

Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

Original Source: Harvard CfA News Release

First Double Star Launched

Image credit: ESA

The first of two Double Star satellites was successfully launched Monday on board a Chinese Long March 2C rocket. The satellite, called TC-1, was launched from the Chinese space port at Xichang into an equatorial orbit, and the second satellite, TC-2 will launch next into a polar orbit. The two satellites will work with the previously-launched Cluster satellites to study the effect of the Sun on the Earth’s atmosphere and magnetosphere. The European Space Agency supplied 8 scientific instruments for the satellite.

This evening, the Chinese National Space Administration (CNSA) successfully launched TC-1, the first of two scientific satellites known as Double Star.

The spacecraft, called ‘Tan Ce 1’ which in Chinese means ‘Explorer 1,’ took off from the Chinese launch base in Xichang, in Sichuan province, on board a Long March 2C launcher.

ESA has contributed to the Double Star mission by providing eight on-board scientific instruments. Double Star follows the footsteps of ESA’s Cluster mission and will study closely the interaction between the solar wind and the Earth’s magnetic field.

The People’s Republic of China and ESA have a long history of scientific collaboration. The first co-operation agreement was signed in 1980, to facilitate the exchange of scientific information. Thirteen years later, the collaboration focused on a specific mission, ESA’s Cluster, to study the Earth’s magnetosphere. Then, in 1997, the CNSA invited ESA to participate in Double Star, a two-satellite mission to study the Earth’s magnetic field, but from a perspective which is different from that of Cluster and complementary to it.

An agreement to develop this joint mission was signed on 9 July 2001 by ESA’s Director General, Antonio Rodota, and Luan Enjie, Administrator of the CNSA.

ESA’s contribution to the mission includes eight scientific instruments, of which seven are spares from the Cluster mission, and support to the ground segment for four hours each day via ESA’s satellite tracking station in Villafranca, Spain.

Today’s launch sees the culmination of these joint efforts and marks another important step in the collaboration between CNSA and ESA. The instruments on board Double Star are the first ever European ones to be flown on a Chinese satellite. Together with those built by Chinese scientists, they will work in synergy with those mounted on board the four Cluster spacecraft.

The positions and orbit of the two Double Star satellites have been carefully defined to allow the study of the magnetosphere on a larger scale than that possible with Cluster alone. An example of this co-ordinated activity is the study of the substorms producing the bright aurorae.

The exact region where they form is still unclear but the simultaneous high-resolution measurements to be made by Double Star and Cluster are expected to give an answer.

Professor David Southwood, the Director of ESA’s Scientific Programme, said: “Double Star is a win-win project. Not only will European scientists participate in a new mission, at a very low cost, but they will also see an increased scientific return from the four ESA Cluster satellites. Chinese scientists will equally benefit of this, since they already participate in the Cluster mission. These are the great advantages of an historic international collaboration.”

Original Source: ESA News Release

Soyuz Launches Israeli Satellite

Image credit: Arianespace

A Soyuz rocket with a Fregat upper stage successfully launched Israel’s AMOS 2 telecommunications satellite on Saturday. The launch occurred at 2130 UTC (4:30 pm EST) from the Baikonur Cosmodrome, and was jointly managed by Arianespace and Starsem. AMOS 2 will supply the Middle East, Europe and Eastern US with satellite broadcasting. This was the 1,684th mission for the Soyuz family of vehicles.

The 1,684th launch of a Soyuz family rocket (using the Soyuz-Fregat version) took place at the Baikonur Cosmodrome in Kazakhstan. The launcher lifted off as scheduled at 2:30 a.m. local time on December 28 (i.e. 21:30 UTC on Saturday December 27, 10:30 p.m. Paris time on December 27).

Starsem, Arianespace and their Russian partners confirmed that the Fregat upper stage accurately injected the Amos 2 satellite into the targeted orbit. This was the Soyuz launcher’s first geostationary transfer orbit (GTO) mission. Three successive burns of the Fregat upper stage were performed to inject the Amos 2 spacecraft on its transfer orbit 6 hours and 45 minutes after lift-off.

To comply with Israel Aircraft Industries’ (IAI) requirements, Arianespace and Starsem had decided, in agreement with Israeli operator, Spacecom Ltd., that the Amos 2 spacecraft launch, initially planned by an Ariane 5, would be performed by a Soyuz launch vehicle. This decision reflects the policy set up by Arianespace and Starsem to meet customers’ needs, providing enhanced flexibility based on a family of launch vehicles.

Today’s launch was also the 12th carried out by Starsem, which is responsible for international marketing of the Soyuz launcher, as well as for its operation. Starsem’s shareholders are Arianespace, EADS, the Russian Aviation and Space Agency and the Samara Space Center.

The new successful Soyuz launch clearly reflects the industrial capabilities of the Samara Space Center as well as the availability of the Russian teams in charge of Soyuz operation, managed by the Russian Aviation and Space Agency.

In 1996, Arianespace had already launched the first Israeli communications satellite, Amos 1. Co-located with Amos 1, at 4 degrees West over the Gulf of Guinea, Amos 2 will provide additional high-power transmission capacity for Europe, the Middle East and the East Coast of the United States. The satellite was designed and built by MBT Space Division of IAI. Weighing 1,374 kg at liftoff and equipped with 14 transponders, Amos 2 will be operated by Spacecom Ltd.

Original Source: Arianespace News Release

Mars Express is Orbiting Safely

Image credit: ESA

Unlike its missing passenger, Beagle 2, controllers from the European Space Agency know exactly where Mars Express is – exactly where they want it. The spacecraft is currently on a wide equatorial orbit which brings it as close as 400 km and then out to 188,000 km away from the planet. Engineers are preparing the spacecraft for a further burn of its main engine which will bring the spacecraft into a closer polar orbit around Mars. Once Mars Express modifies its orbit, it will be the best candidate to communicate with the missing Beagle 2; starting January 4, 2004.

The Mars Express orbiter, mothership of Europe’s first mission to the Red Planet, is in a stable and precise orbit around Mars.

The essential Mars Orbit Insertion (MOI) manoeuvre had been completed on 25 December at 3:47 CET. This brought the spacecraft as close as 400 kilometres to the surface of Mars.

Afterwards, the spacecraft went into a highly elliptical orbit, going as far as 188 000 kilometres away from the planet. The most essential part of the Mars Express mission is performing very well and we are expecting exciting science from January 2004 onwards.

Today, 27 December, the mission control team at ESOC prepared the next steps to turn Mars Express from a near-equatorial orbit into a polar orbit. Michael McKay, Mars Express Flight Director explained, “Our flight dynamics and flight operations teams thoroughly discuss, evaluate and prepare the commands to perform a series of manoeuvres starting with a major move on 30 December – where we will fire the main engine again for three minutes.

“These key manoeuvres will allow us to get even closer to Mars. They will not only allow us more frequent ‘overflights’ of the Beagle 2 landing area, but also ensure the beginning of the orbiter’s science mission. As Mars Express is the planned main communication partner of the Beagle 2, the chances of obtaining a signal strongly increase with these manoeuvres after 4 January 2004.”

Close European and international co-operation
The ESA control team at ESOC are in regular contact with their colleagues of the Beagle 2 team and the Jodrell Bank telescope in the UK, with NASA ground stations and with several other European partners (UK, Germany, Netherlands, etc.). Many international offers have been forthcoming to support the search for the Beagle 2 lander.

Original Source: ESA News Release

The Search for Beagle 2 Continues

Image credit: ESA

Controllers have made two more attempts to reach the Beagle 2 lander, which was thought to have entered Mars’ atmosphere on December 25: once with both the Jodrell Bank radio telescope and again with Mars Odyssey. Although they’re disappointed, the engineers still have a few tricks up their sleeves. A special team has been put together, and is working around the clock to devise solutions for potential problems with the lander; if there are hardware or software problems, or if it’s ended up at an unusual angle. People will really start to lose hope in early January when Mars Express reaches its final polar orbit – it’s the spacecraft Beagle 2 was designed to communicate with.

Two attempts to communicate with Beagle 2 during the last 24 hours – first with the 76 metre (250 feet) Lovell Telescope at Jodrell Bank Observatory in Cheshire, UK, and then this morning with the Mars Odyssey orbiter – ended without receiving a signal. Despite this outcome, fresh attempts to scan for a signal from Beagle 2 will be made over the coming days.

Meanwhile, scientists and engineers are eagerly awaiting ESA’s Mars Express spacecraft return close enough to Mars to try to establish contact with Beagle 2. This may be possible from 4 January 2004.

Mars Express was always intended to be the prime communication relay for Beagle 2, and the lander team is hopeful that a link can be established at that time if it has not already been achieved with Mars Odyssey.

“We need to get Beagle 2 into a period when it can broadcast for a much longer period,” says Professor Colin Pillinger, Beagle 2 lead scientist. “This will happen around the 4 January after the spacecraft has experienced a sufficient number of communication failures to switch to automatic transmission mode.”

Both Professor Pillinger and Professor David Southwood, ESA Director of Science, agreed that the best chance to establish communication with Beagle 2 would now seem to be through Mars Express.

At present, Mars Express is far from the planet and preparing to fire its engines for a major trajectory change that will move it into a polar orbit around Mars.

“We will have no satisfaction until we have a full mission” said Professor Southwood. “Today I’m certainly frustrated, but I’m still confident: let’s wait now until the mothership will have the possibility to get in contact with her baby. With Mars Express we will be using a system that we have fully tested and understand.”

Original Source: ESA News Release

Jodrell Listens to Mars, But No Beagle 2

Image credit: PPARC

After NASA’s Mars Odyssey failed to make contact with the British-built Beagle 2 lander on Christmas morning, all hopes were pinned on the Earth-based Jodrell Bank radio telescope to hear its faint signal. After listening for more than two hours, unfortunately, operators failed to tune into the spacecraft’s signal. Then another opportunity to communicate with Odyssey on December 26 failed as well. Mission controllers haven’t completely lost hope, though. When Mars Express reaches its final orbit in early January, it will be the best opportunity to communicate with Beagle 2 and help determine, once and for all, if the spacecraft survived its landing.

Scientists were hopeful that the 250 ft (76 m) Lovell Telescope, recently fitted with a highly sensitive receiver, would be able to pick up the outgoing call from the Mars lander between 19.00 GMT and midnight last night. An attempt to listen out for Beagle’s call home by the Westerbork telescope array in the Netherlands was unfortunately interrupted by strong radio interference.

The next window of opportunity to communicate via Mars Odyssey will open at 17.53 GMT and close at 18.33 GMT this evening, when the orbiter is within range of the targeted landing site on Isidis Planitia.

Another communication session from Jodrell Bank is scheduled between 18.15 GMT and midnight tonight, when Mars will be visible to the radio telescope. It is also hoped that the Stanford University radio telescope in California will be able to listen for the carrier signal on 27 December.

The Beagle 2 team plans to continue using the Mars Odyssey spacecraft as a Beagle 2 communications relay for the next 10 days, after which the European Space Agency’s Mars Express orbiter will become available.

Mars Express, which was always planned to be Beagle 2’s main communication link with Earth, successfully entered orbit around the planet on 25 December and is currently being manoeuvred into its operational polar orbit.

Meanwhile, 13 more attempts to contact Mars Odyssey have been programmed into Beagle 2’s computer. If there is still no contact established after that period, Beagle 2 is programmed to move into auto-transmission mode, when it will send a continuous on-off pulse signal throughout the Martian daylight hours.

The first window of opportunity to communicate with Beagle 2 took place at around 06.00 GMT yesterday, when NASA’s Mars Odyssey spacecraft flew over the planned landing site. In the absence of a signal from the 33 kg lander, the mission team contacted Jodrell Bank to put their contingency plan into operation.

At present, Beagle 2 should be sending a pulsing on-off signal once a minute (10 seconds on, 50 seconds off). Some 9 minutes later, this very slow “Morse Code” broadcast should reach Earth after a journey of some 98 million miles (157 million km).

Although the Beagle’s transmitter power is only 5 watts, little more than that of a mobile phone, scientists are confident that the signal can be detected by the state-of-the-art receiver recently installed on the Lovell Telescope. However, a significant drop in signal strength would require rigorous analysis of the data before it could be unambiguously identified.

Although the ground-based radio telescopes will not be able to send any reply, the new information provided by detection of the transmission from Beagle 2 would enable the mission team to determine a provisional location for Beagle 2. This, in turn, would allow the communications antenna on Mars Odyssey to be directed more accurately towards Beagle 2 during the orbiter’s subsequent overhead passes.

Original Source: PPARC News Release

Mars Express Arrives But No Word From Beagle 2

Image credit: Beagle 2

The European Space Agency confirmed that Mars Express has arrived safely at the Red Planet, ending its 400 million kilometre journey, and beginning its mission to map the surface and search for underground water. The spacecraft began its 37 minute orbital insertion burn at 0247 UTC. Controllers believe that the British-built Beagle 2 also reached Mars at approximately the same time, but the lander failed to make contact with Mars Odyssey, which should have relayed communications back to Earth. Controllers will attempt to make contact again on December 25 at 2200 UTC, this time with the Earth-based Jodrell Bank telescope in Cheshire, UK.

This morning, after a journey lasting 205 days and covering 400 million kilometres, the European Mars Express space probe fired its main engine at 03:47 CET for a 37-minute burn in order to enter an orbit around Mars. This firing gave the probe a boost so that it could match the higher speed of the planet on its orbit around the Sun and be captured by its gravity field, like climbing in a spinning merry-go-round. This orbit insertion manoeuvre was a complete success.

This is a great achievement for Europe on its first attempt to send a space probe into orbit around another planet.

At approximately the same time, the Beagle 2 lander, protected by a thermal shield, entered the Martian atmosphere at high velocity and is expected to have reached the surface at about 03:52 CET. However, the first attempt to communicate with Beagle 2, three hours after landing, via NASA?s Mars Odyssey orbiter, did not establish radio contact. The next contact opportunity will be tonight at 23:40 CET.

The tiny lander was released from the orbiter six days ago on a collision course towards the planet. Before separation, its on-board computer was programmed to operate the lander on its arrival at the surface, by late afternoon (Martian time). According to the schedule, the solar panels must deploy to recharge the on-board batteries before sunset. The same sequence also tells Beagle 2 to emit a signal at a specific frequency for which the Jodrell Bank Telescope, UK, will be listening later tonight. Further radio contacts are scheduled in the days to come.

In the course of the coming week, the orbit of Mars Express will be gradually adjusted in order to prepare for its scientific mission. Mars Express is currently several thousand kilometres away from Mars, in a very elongated equatorial orbit. On 30 December, ESA’s ground control team will send commands to fire the spacecraft’s engines and place it in a polar, less-elongated orbit (about 300 kilometres pericentre, 10000 apocentre, 86? inclination). From there, ESA’s spacecraft will perform detailed studies of the planet’s surface, subsurface structures and atmosphere. Commissioning of some of the on-board scientific instruments will begin towards mid-January and the first scientific data are expected later in the month.

?The arrival of Mars Express is a great success for Europe and for the international science community. Now, we are just waiting for a signal from Beagle 2 to make this Christmas the best we could hope for!? said David Southwood, head of ESA?s Science Directorate. ?With Mars Express, we have a very powerful observatory in orbit around Mars and we look forward to receiving its first results. Its instruments will be able to probe the planet from its upper atmosphere down to a few kilometres below the surface, where we hope to find critical clues concerning the conditions for life, in particular traces of water. We expect this mission to give us a better understanding of our neighbour planet, of its past and its present, answering many questions for the science community and probably raising an even greater number of fascinating new ones. I hope we can see it as opening up a new era of European exploration?.

Original Source: ESA News Release

Robert Zubrin Responds to Your Questions

A few weeks ago I reviewed Dr. Robert Zubrin’s newest book, Mars on Earth. I’ve had feedback from Universe Today readers in the past that they they’d like to ask Zubrin a few questions about his goal of sending humans to Mars, so I figured this would be a good chance to get those questions answered. I gave people on the forum a few days to propose their questions and then I selected four questions that I felt were original, and didn’t really cover territory that we’ve heard Zubrin talk about in past (such as in The Case for Mars and Entering Space).

Thanks to everyone who participated, and thanks to Dr. Zubrin for taking the time to respond. If you had fun with this, let me know if there’s anyone else you’d like to throw questions at, and maybe I can track them down.

If you’re interested in the goal of sending humans to Mars, I highly recommend you take a look at the Mars Society, which Robert Zubrin is the President. Click here to visit their website.

1. Dave Mitsky: What do you feel is the most dangerous aspect of the Mars Direct plan?

Zubrin: The ascent from Mars in the Earth Return Vehicle (ERV). The liftoff from Mars followed by trans-Earth injection only requires about half the delta-V as the outbound trip, but there will be much fewer people there to monitor it. So we need really good automated health maintenance and monitoring equipment on the ERV, allowing the launch to be effectively controlled from Earth.

2. Eli: What do you think should be done to make sure a manned Mars mission will not be a “take a photo and not come back for 3 decades” mission ala Apollo?

Zubrin: The problem with Apollo was twofold; that it was the creature of the political class, and the basis upon which it was sold to much of the political class. When it achieved its stated Cold War objective, the elites were then free to dismantle it, as there was no organic space movement with a deeper goal around to sustain it.

We need to make sure that the Mars program is created with the stated goal of opening a new world for humanity, and we need to organize a grassroots movement that supports it and sustains it on that basis.

Black abolitionist leader Frederick Douglas once said “Emancipation would lose half its value were it won by the efforts of white men alone.” He was right. We need to make sure that the Mars program is OUR program, and not THEIR program.

3. Josh: What feedback have the people in power – the government or NASA – given to your ideas?

Zubrin: Many people at the NASA field centers have become supporters of Mars Direct. Some of the headquarters crowd still opposes it as they oppose any destination driven orientation that would force NASA to abandon its constituency-driven method of spending and provide a metric against which results could be measured.

4. exAstro: If it comes down to a cost/benefit analysis we’ll probably never go to Mars- at least by current thinking. So- how do we move beyond that mindset? What would prompt the ultimate decision makers (purse holders) to decide that it’s in “our” best interest to go to Mars? I assume that the technology is not at issue.

Zubrin: I dispute the premise of the question. A cost-benefit analysis demands that we abandon the wasteful Shuttle-era approach of constituency driven spending and return to the highly productive destination driven Apollo era approach.

NASA spending is now 90% of the average Apollo era (1961-1973) level. We spent as much on NASA, in real inflation-adjusted dollars, between 1990 and 2003 as we did between 1961 and 1973. But compare the results. Between 1961-1973 we went from near zero space capability to fly Mercury, Gemini, Apollo, Skylab, Ranger, Mariner, Surveyor, Pioneer Jupiter; we developed hydrogen/oxygen rocket engines, multi-staged heavy lift launch vehicles, in space life support systems, spacesuits, soft landing techniques, lunar rovers, RTGs, space nuclear reactors, nuclear rocket engines, reentry techniques, interplanetary navigation and communication technologies; we built the Deep Space Network, Johnson Space Center, JPL (in the sense it exists today), the Cape Canaveral launch complex, and we inspired a generation of youth to enter science and engineering.

In contrast, between 1990 and 2003 we flew about three-score STS missions, launched and repaired Hubble, launched half a dozen lunar or planetary probes (compared with over 40 for 61-73), and launched a space station which is still less capable than Skylab. So the mission productivity was much less, but the technology return was even worse; as a result of the lack of any forcing function, NASA, despite its claim to be focussing on technology development, developed NO significant new space technologies during the 1990-2003 period, built no new infrastructure, and failed to inspire youth in any way remotely comparable to that it achieved in the sixties.

So if the question is; how do we assure the taxpayers of a real return on their space dollar, there is only one answer; Give NASA a job that is worthy of a $16 billion/year space agency. Assign it the task of sending humans to Mars within a decade.