Destroyed Australian Observatory to Be Rebuilt

Image credit: ANU

In early 2003 bushfires destroyed much of Australia’s Stromlo Observatory, including five telescopes and several support buildings. On Sunday, July 13, the Australian National University unveiled plans to rebuild the facilities on Mt Stromlo. In addition to building two new telescopes (including a two-metre robotic telescope), the University will also reconstruct several heritage buildings destroyed in the fire.

Bushfires in January destroyed more than $40 million worth of facilities and equipment at the Observatory, including five telescopes, workshops, an important heritage building and seven houses.

Mt Stromlo will resume its mantle as the home of Australian astronomy through the planned redevelopment, which includes the placement of two telescopes on Mount Stromlo and one at the ANU Siding Spring Observatory near Coonabarabran, reconstruction of heritage buildings and enhanced viewing facilities for the public, including a newvirtual reality theatre.

The redevelopment will ensure Mt Stromlo remains a world-class astronomy research and education facility, ANU Vice-Chancellor Professor Ian Chubb said. Funding for the redevelopment, including insurance claims, is yet to be finalised, so the plan allows for staged construction.

?Mt Stromlo is not just an icon of Australian science, it is the workplace of number of the world?s leading researchers,? Professor Chubb said.

?The January fires devastated the observatory, but it is time to look ahead to the new Stromlo.

?It is clear that a site with such heritage, renowned as a powerhouse of research and innovation around the world, must be re-equipped with world-class facilities. The University, the International scientific community and the Australian public would not and could not accept a second-class Stromlo.?

The planned redevelopment includes:
? The Advanced Instruments and Engineering Facility, which will replace the workshops destroyed in the blaze, offering expanded design and manufacture capabilities for precision optical instruments and a research and development program focusing on Extremely Large Telescopes

? A new robotically-controlled two-metre telescope, the Phoenix

? The world?s fastest sky-mapping telescope, the Skymapper, to be built at the ANU Siding Spring Observatory, but controlled from Mt Stromlo through a broadband link

? Restoration of the historic 1924 Admin building, to house a rebuilt library and offices

? Restoration of the historic 23cm Oddie Telescope

? Housing for Staff and Students

? A new virtual reality theatre, allowing visitors to fly through our universe in 3D

The Director of the Research School of Astronomy and Astrophysics, Professor Penny Sackett, said Mt Stromlo had opened the eyes of tens of thousands of Australians to science and served as a vital resource to international astronomy for decades ? and would continue to play this role in future.

?The fires destroyed much of our infrastructure, but left our most important asset intact ? our people,? Professor Sackett said.

?The day after fires, we committed to restoring Stromlo and its network of facilities as a pillar of Australian science.

?Three weeks after the fires, our staff were back at work on the mountain, working in two office buildings which were largely undamaged.

?We can not and we should not reconstruct a carbon copy of the old Stromlo. This new design is overwhelmingly oriented around meeting the needs of staff, students and visitors ? while also ensuring Stromlo retains its status as an internationally important observatory.

?For decades, Stromlo and Siding Spring have been operated as integrated observatories, combining the virtues of a control base close to ANU, close to the nation?s capital and accessible to the community with a primary observation base offering optimal astronomical and climatic conditions.

?The new design retains telescopes and the research hub at Stromlo, but provides even stronger integration with the University?s Siding Spring resources, ultimately providing a more powerful research facility for Australia.?

Original Source: ANU News Release

New Galaxy Clusters Discovered

Image credit: ESO

A team of European and Chilean astronomers have discovered several large clusters of galaxies at a distance of 8 billion light years which should provide insights into the structure and evolution of the Universe. The galaxy clusters were discovered by combining images from the ESA’s XMM-Newton space telescope and the ESO’s Very Large Telescope. Galaxy clusters aren’t spread evenly, but appear strung through the Universe like a web, and so far it seems like the shape of these clusters hasn’t changed since the Universe was very young..

Using the ESA XMM-Newton satellite, a team of European and Chilean astronomers [2] has obtained the world’s deepest “wide-field” X-ray image of the cosmos to date. This penetrating view, when complemented with observations by some of the largest and most efficient ground-based optical telescopes, including the ESO Very Large Telescope (VLT), has resulted in the discovery of several large clusters of galaxies.

These early results from an ambitious research programme are extremely promising and pave the way for a very comprehensive and thorough census of clusters of galaxies at various epochs. Relying on the foremost astronomical technology and with an unequalled observational efficiency, this project is set to provide new insights into the structure and evolution of the distant Universe.

The universal web
Unlike grains of sand on a beach, matter is not uniformly spread throughout the Universe. Instead, it is concentrated into galaxies which themselves congregate into clusters (and even clusters of clusters). These clusters are “strung” throughout the Universe in a web-like structure, cf. ESO PR 11/01.

Our Galaxy, the Milky Way, for example, belongs to the so-called Local Group which also comprises “Messier 31”, the Andromeda Galaxy. The Local Group contains about 30 galaxies and measures a few million light-years across. Other clusters are much larger. The Coma cluster contains thousands of galaxies and measures more than 20 million light-years. Another well known example is the Virgo cluster, covering no less than 10 degrees on the sky !

Clusters of galaxies are the most massive bound structures in the Universe. They have masses of the order of one thousand million million times the mass of our Sun. Their three-dimensional space distribution and number density change with cosmic time and provide information about the main cosmological parameters in a unique way.

About one fifth of the optically invisible mass of a cluster is in the form of a diffuse hot gas in between the galaxies. This gas has a temperature of the order of several tens of million degrees and a density of the order of one atom per liter. At such high temperatures, it produces powerful X-ray emission.

Observing this intergalactic gas and not just the individual galaxies is like seeing the buildings of a city in daytime, not just the lighted windows at night. This is why clusters of galaxies are best discovered using X-ray satellites.

Using previous X-ray satellites, astronomers have performed limited studies of the large-scale structure of the nearby Universe. However, they so far lacked the instruments to extend the search to large volumes of the distant Universe.

The XMM-Newton wide-field observations
Marguerite Pierre (CEA Saclay, France), with a European/Chilean team of astronomers known as the XMM-LSS consortium [2], used the large field-of-view and the high sensitivity of ESA’s X-ray observatory XMM-Newton to search for remote clusters of galaxies and map out their distribution in space. They could see back about 7,000 million years to a cosmological era when the Universe was about half its present size and age, when clusters of galaxies were more tightly packed.

Tracking down the clusters is a painstaking, multi-step process, requiring both space and ground-based telescopes. Indeed, from X-ray images with XMM, it was possible to select several tens of cluster candidate objects, identified as areas of enhanced X-radiation (cf PR Photo 19b/03).

But having candidates is not enough ! They must be confirmed and further studied with ground-based telescopes. In tandem with XMM-Newton, Pierre uses the very-wide-field imager attached to the 4-m Canada-France-Hawaii Telescope, on Mauna Kea, Hawaii, to take an optical snapshot of the same region of space. A tailor-made computer programme then combs the XMM-Newton data looking for concentrations of X-rays that suggest large, extended structures. These are the clusters and represent only about 10% of the detected X-ray sources. The others are mostly distant active galaxies.

Back to the Ground
When the programme finds a cluster, it zooms in on that region and converts the XMM-Newton data into a contour map of X-ray intensity, which is then superimposed upon the CFHT optical image (PR Photo 19c/03). The astronomers use this to check if anything is visible within the area of extented X-ray emission.

If something is seen, the work then shifts to one of the world’s prime optical/infrared telescopes, the European Southern Observatory’s Very Large Telescope (VLT) at Paranal (Chile). By means of the FORS multi-mode instruments, the astronomers zoom-in on the individual galaxies in the field, taking spectral measurements that reveal their overall characteristics, in particular their redshift and hence, distance.

Cluster galaxies have similar distances and these measurement ultimately provide, by averaging, the cluster’s distance as well as the velocity dispersion in the cluster. The FORS instruments are among the most efficient and versatile for this type of work, taking on the average spectra of 30 galaxies at a time.

The first spectroscopic observations dedicated to the identification and redshift measurement of the XMM-LSS galaxy clusters took place during three nights in the fall of 2002.

As of March 2003, there were only 5 known clusters in the literature at such a large redshift with enough spectroscopically measured redshifts to allow an estimate of the velocity dispersion. But the VLT allowed obtaining the dispersion in a distant cluster in 2 hours only, raising great expectations for future work.

700 spectra…
Marguerite Pierre is extremely content : Weather and working conditions at the VLT were optimal. In three nights only, 12 cluster fields were observed, yielding no less than 700 spectra of galaxies. The overall strategy proved very successful. The high observing efficiency of the VLT and FORS support our plan to perform follow-up studies of large numbers of distant clusters with relatively little observing time. This represents a most substantial increase in efficiency compared to former searches.

The present research programme has begun well, clearly demonstrating the feasibility of this new multi-telescope approach and its very high efficiency. And Marguerite Pierre and her colleagues are already seeing the first tantalising results: it seems to confirm that the number of clusters 7,000 million years ago is little different from that of today. This particular behaviour is predicted by models of the Universe that expand forever, driving the galaxy clusters further and further apart.

Equally important, this multi-wavelength, multi-telescope approach developed by the XMM-LSS consortium to locate clusters of galaxies also constitutes a decisive next step in the fertile synergy between space and ground-based observatories and is therefore a basic building block of the forthcoming Virtual Observatory.

More information
This work is based on two papers to be published in the professional astronomy journal, Astronomy and Astrophysics (The XMM-LSS survey : I. Scientific motivations, design and first results by Marguerite Pierre et al., astro-ph/0305191 and The XMM-LSS survey : II. First high redshift galaxy clusters: relaxed and collapsing systems by Ivan Valtchanov et al., astro-ph/0305192).

Dr. M. Pierre will give an invited talk on this subject at the IAU Symposium 216 – Maps of the Cosmos – this Thursday July 17, 2003 during the IAU General Assembly 2003 in Sydney, Australia.

Notes
[1]: This a coordinated ESO/ESA release.

[2]: The XMM-LSS consortium is led by the Service d’Astrophysique du CEA (France) and consists of institutes from the UK, Ireland, Denmark, The Netherlands, Belgium, France, Italy, Germany, Spain and Chile. The homepage of the XMM-LSS project can be found at http://vela.astro.ulg.ac.be/themes/spatial/xmm/LSS/index_e.html

[3]: In astronomy, the “redshift” denotes the fraction by which the lines in the spectrum of an object are shifted towards longer wavelengths. Since the redshift of a cosmological object increases with distance, the observed redshift of a remote galaxy also provides an estimate of its distance.

Original Source: ESO News Release

Universe Today Forums

After running the “Discuss this story” links for just a couple of days, it was pretty clear that giving people the opportunity to talk to each other was just what Universe Today was missing. So, I decided to expand the offering to a full-fledged discussion forum. My hope is that it can be a place where space enthusiasts can come together and hash out their ideas. Ask questions and answer them, and generally be surrounded by other people who share our passion.

Joining the forums is free, and easy to do. Just click this link, or visit the “Forum” tab whenever you visit the Universe Today. Create an account and then post away. Keep in mind that this is one of those “get out what you put in” situations. If you’re hungry for intelligent conversation about space and astronomy, then please take some time to connect with other people – we’ll all be the richer.

I’ve been working hard to get various “special guests” to provide official responses to your questions. For example, Jennifer Spencer, the Web Curator for the Gravity Probe B project provided a great answer to a reader’s question about the speed of gravity. I’ll try to get answers from the source whenever I can.

Thanks!

Fraser Cain
Publisher
Universe Today

Gravity Probe B Arrives at Vandenberg

Image credit: NASA

NASA’s Gravity Probe B arrived at Vandenberg Air Force Base on Friday, July 11 to begin launch preparations. Once launched, the spacecraft will use four ultra-precise gyroscopes to test two predictions of Einstein’s General Theory of Relativity: how space and time are warped by the Earth, and how the Earth’s rotation drags space-time around with it. If all goes well, the spacecraft will launch on board a Boeing Delta II rocket in late 2003.

The NASA spacecraft designed to test two predictions of Einstein’s Theory of General Relativity has been shipped from the Lockheed Martin Space Systems Facility in Sunnyvale, Calif., to the launch site at Vandenberg Air Force Base, Calif., after completing environmental testing. The Marshall Center manages the Gravity Probe B program for NASA.

The NASA spacecraft designed to test two important predictions of Albert Einstein’s Theory of General Relativity was shipped yesterday from the Lockheed Martin Space Systems Facility in Sunnyvale, Calif., to the launch site at Vandenberg Air Force Base, Calif., after completing environmental testing.

NASA’s Gravity Probe B mission, also known as GP-B, will use four ultra-precise gyroscopes to test Einstein’s theory that space and time are distorted by the presence of massive objects. To accomplish this, the mission will measure two factors — how space and time are warped by the presence of the Earth, and how the Earth’s rotation drags space-time around with it.

Stanford University in Stanford, Calif., and Lockheed Martin performed the testing. Shipped by road transport, the vehicle arrived July 10 at Vandenberg for pre-launch operations in anticipation of a launch in late 2003.

NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the GP-B program. NASA’s prime contractor for the mission, Stanford University, conceived the experiment and is responsible for the design and integration of the science instrument, as well as for mission operations and data analysis. Lockheed Martin, a major subcontractor, designed, integrated and tested the spacecraft and some of its major payload components.

The erection of the Boeing Delta II launch vehicle on Space Launch Complex 2 (SLC-2) at Vandenberg Air Force Base is currently scheduled to begin on September 15 with erection of the first stage. Attachment of the nine strap-on solid rocket boosters is scheduled to occur in sets of three on September 16 – 18. The second stage is planned for mating atop the first stage on September 19. Gravity Probe B will be transported from the spacecraft hangar to SLC-2 on October 29 and hoisted atop the second stage. The Delta II fairing will be installed around the spacecraft on November 5, part of final pre-launch preparations. The launch is the responsibility of NASA’s John F. Kennedy Space Center in Florida.

Original Source: NASA News Release

Dust Storm on Mars Visible By Amateurs

Image credit: Hubble

Now that Mars is closer than ever, amateur astronomers with regular backyard telescopes can see incredible details on the planet’s surface. On July 1, astronomers were able to see a dust storm in the Hellas Basin; four days later it was 1,800 kilometres wide, obscuring nearly a quarter of the planet. Two years ago a similar storm grew in the same region and ended up obscuring the entire planet for months. Earth and Mars will reach their closest point in 60,000 years on August 27, 2003, and the Red Planet should offer up some tremendous views.

Something is happening on Mars and it’s so big you can see it through an ordinary backyard telescope.

On July 1st a bright dust cloud spilled out of Hellas Basin, a giant impact crater on Mars’ southern hemisphere. The cloud quickly spread and by the Fourth of July was 1100 miles wide–about one-fourth the diameter of Mars itself.

“The cloud can be seen now through a telescope as small as 6 inches,” says Donald Parker, executive director of the Association of Lunar and Planetary Observers (ALPO). “Its core is quite bright.”

Parker has been tracking the cloud through his own 16-inch telescope. “A red filter helps,” he notes. “Even a piece of red or orange gelatin held between the eye and ocular will improve the visibility of the dust.”

Two years ago, a similar cloud from Hellas Basin grew until it circled the entire planet. Features on Mars long familiar to amateur astronomers–the dark volcanic terrain of Syrtis Major, for example–were hidden for months. “The planet looked like an orange billiard ball,” recalls Parker.

Will it happen again?

“No one knows,” says astronomer James Bell of Cornell University who studied the dust storm of 2001 using the Hubble telescope. “We don’t yet understand the mechanism that causes regional clouds to self-assemble into giant dust storms.”

Mars Global Surveyor and Mars Odyssey, two NASA spacecraft circling Mars, have seen many “regional storms” like the cloud near Hellas Basin now. They persist for a few days or weeks, then dissipate. Rarely do they become a planet-wide event.

“Only 10 global or planet-encircling dust storms have been reported since 1877,” notes Parker.

All dust storms on Mars, no matter what size, are powered by sunshine. Solar heating warms the martian atmosphere and causes the air to move, lifting dust off the ground.

Because the martian atmosphere is thin–about 1% as dense as Earth’s at sea level–only the smallest dust grains hang in the air. “Airborne dust on Mars is about as fine as cigarette smoke,” says Bell. These fine grains reflect 20% to 25% of the sunlight that hits them; that’s why the clouds look bright. (For comparison, the reflectivity of typical martian terrain is 10% to 15%.)

Sunlight on Mars is about to become unusually intense. The planet goes around the sun in a 9%-elliptical orbit with one end 40 million km closer to the sun than the other. Mars reaches perihelion–its closest approach to the sun–on August 30th. During the weeks around perihelion, sunlight striking Mars will be 20% more intense than the annual average.

“This means the season for dust storms is just beginning,” says Bell.

A total of four spacecraft from NASA, the European Space Agency and Japan are en route to Mars now. They include three landers and two orbiters. Will dust storms cause problems for those missions?

Probably not. NASA spacecraft have encountered Mars dust before. The Viking landers of 1976, for instance, weathered two big dust storms without being damaged. As far as researchers were concerned, it was a good opportunity to study such storms from the inside–something Mars colonists may do again one day for themselves. Viking data will give them a head start.

Five years earlier, in 1971, the Mariner 9 spacecraft reached Mars during the biggest dust storm ever recorded. The planet was completely obscured; not even the polar caps were visible. Mission controllers simply waited a few weeks for the storm to subside. Then they carried on with Mariner 9’s mission: to photograph the entire surface of the planet. It was a complete success.

As 2003 unfolds, Earth and Mars are drawing together for their closest approach in some 60,000 years on August 27th. Already in July Mars is a pleasing sight. Step outside before dawn anytime this month. Mars will be there in the southern sky, a remarkably bright red star. (If you live in the southern hemisphere, look northeast instead.)

Right: John Nemy and Carol Legate took this recent picture of bright Mars and a meteor above their campsite on Blackcomb Mountain, Whistler, British Columbia.

Even a small telescope will reveal the planet’s orange disk and its icy south polar cap. And if “seeing is good” you might catch a glimpse of some dust clouds. Swirling, surging, merging with others … building the next global dust storm? “They’re fun to watch,” says Parker. Now is a great time to see for yourself.

Original Source: NASA Science Story

Age Wasn’t a Cause of the Columbia Disaster

During a press briefing on Friday, investigators ruled out the age of the space shuttle Columbia as a contributing cause to its destruction. With the most recent foam test, which knocked a large hole in sample shuttle wing panel, the force of the impact would have broken through, even if the panel was brand new. Investigators believe the hole in Columbia was smaller than the one in the test panel; otherwise it would have broken up much earlier upon re-entry.

World’s Astronomers Meet in Sydney

Astronomers from around the world have descended on Sydney, Australia for the 25th general assembly of the International Astronomical Union. Around 2,000 astronomers will be in the city to attend the event which will cover a vast range of topics, such as “Young Neutron Stars and their Environments”.

During this event, astronomers are announcing all kinds of discoveries, so don’t be surprised if Universe Today is a little bigger than normal and astronomy-focused for the next few weeks. I’ll try to stay on top of it as much as possible.

If you’re in Sydney, let me know how it all goes.

Fraser Cain
Publisher
Universe Today

Opportunity is Working Well

Image credit: NASA/JPL

Opportunity, NASA’s second Mars Exploration rover, has been in space for a few days now and everything seems to be going according to plan. The spacecraft has reduced its spin rate from 12 rotations a minute to just 2; enabling it to switch to celestial navigation using its star scanner. In fact, one of the first reference points Opportunity used was Mars – already one of the brightest objects in view. It’s already over 7 million kilometres away from the Earth and on track to arrive at Mars on January 25.

NASA’s Opportunity spacecraft, the second of twin Mars Exploration Rovers, has successfully reduced its spin rate as planned and switched to celestial navigation using a star scanner.

Prior to today?s maneuver, Opportunity was spinning 12.13 rotations per minute. Onboard thrusters were used to reduce the spin rate to approximately 2 rotations per minute, the designed rate for the cruise to Mars. After the spinning slowed, Opportunity’s star scanner found stars that are being used as reference points for spacecraft attitude. One of the bright points in the star scanner’s first field of view was Mars.

All systems on the spacecraft are in good health. As of 6 a.m. Pacific Daylight Time July 10, Opportunity will have traveled 6.6 million kilometers (4.1 million miles) since its July 7 launch. The Mars Exploration Rover flight team at NASA’s Jet Propulsion Laboratory, Pasadena, Calif., is preparing to command Opportunity’s first trajectory-correction maneuver, scheduled for July 18.

Opportunity will arrive at Mars on Jan. 25, 2004, Universal Time (evening of Jan. 24, 2004, Eastern and Pacific times). The rover will examine its landing area in Mars’ Meridiani Planum area for geological evidence about the history of water on Mars.

Opportunity’s twin, Spirit, also continues in good health on its cruise to Mars. As of 6 a.m. Pacific Daylight Time July 10, it will have traveled 82.6 million kilometers (51.3 million miles) since its June 10 launch.

JPL, a division of the California Institute of Technology, manages the Mars Exploration Rover project for NASA’s Office of Space Science, Washington, D.C. Additional information about the project is available from JPL at http://mars.jpl.nasa.gov/mer or and from Cornell University, Ithaca, N.Y., at http://athena.cornell.edu.

Original Source: NASA/JPL News Release

NASA Has Too Many Astronauts

Image credit: NASA

A new report released Thursday by NASA’s Inspector General says that the agency has too many astronauts for the number of shuttle flights. As of December 2002, 53 of the agency’s 116 astronauts had yet to actually go into space because of fewer shuttle flights than originally planned; what was supposed to be 8 or 9 flights a year ended up being only five times a year. Ironically, this report was prepared before the Columbia disaster, so the loss of another orbiter will make this problem even worse. Astronauts selected for the 2004 class probably won’t make it to space until 2009.

The review “Improving Management of the Astronaut Corps” (G-01-035) has been posted to the NASA Office of Inspector General Web.

The NASA Office of Inspector General (OIG) evaluated the management of the astronaut corps. The OIG considered whether the NASA astronaut corps was being used effectively, was supportive of the Agency’s current and future mission, and was managed in accordance with governing policies and procedures. We conducted this review because the effective management of the astronaut corps is integral to the success of NASA’s mission.

Our report was scheduled to be released in final form in February 2003. However, when the Space Shuttle Columbia and its crew were lost we decided to delay the release of the report until a more appropriate time. Now that NASA is working to recruit an Astronaut Candidate Class of 2004 that includes pilots, mission specialists, and educator astronauts, we believe that our recommendations will aid the decision- making process.

Results of Review
The substance of the report has not been adjusted to reflect the loss of the Columbia or its crew. We found overly optimistic predictions of future flight rates, minimal regulation of astronaut candidate selection, and the need to staff engineering positions at Johnson Space Center to be factors in the Agency’s astronaut hiring process. As a result, costs for the astronaut program were higher than necessary and not all individuals trained to be astronauts were being used in a manner commensurate with their expensive training. We projected that the mission specialists in the class of 2000 would wait an average of 105 months to fly for the first time. Based on our projection, the last mission specialist in that class would not fly until April 2010 (116 months after joining the astronaut corps).

Recommendations
To assist the Agency in assuring that the size of the corps is more closely aligned with mission and program needs, we recommended that the Agency establish formal guidelines for certain aspects of the astronaut candidate selection process, conduct more realistic analyses of astronaut corps size needs, document reasons for deviating from those analyses, and establish formal criteria for astronaut technical assignments.

Management’s Response
NASA management concurred with our recommendations and has planned corrective actions that we consider responsive.

Original Source: NASA News Release

Hubble Identifies the Oldest Known Planet

Image credit: Hubble

The Hubble Space Telescope was recently used to identify the oldest extrasolar planet ever discovered. The 2.5 Jupiter mass planet was originally discovered around a pulsar in the globular cluster M4 way back in 1988; astronomers detected a regular dimming of the pulsar’s radio wave emissions. By using Hubble, astronomers were better able to explain how the planet ended up around a pulsar. This discovery could reshape the current models of planetary development, which predicted that stars needed to go through at least one complete cycle to create the heavier elements that planets require.

Long before our Sun and Earth ever existed, a Jupiter-sized planet formed around a sun-like star. Now, 13 billion years later, NASA’s Hubble Space Telescope has precisely measured the mass of this farthest and oldest known planet. The ancient planet has had a remarkable history because it has wound up in an unlikely, rough neighborhood. It orbits a peculiar pair of burned-out stars in the crowded core of a globular star cluster.

The new Hubble findings close a decade of speculation and debate as to the true nature of this ancient world, which takes a century to complete each orbit. The planet is 2.5 times the mass of Jupiter. Its very existence provides tantalizing evidence that the first planets were formed rapidly, within a billion years of the Big Bang, leading astronomers to conclude that planets may be very abundant in the universe.

The planet now lies in the core of the ancient globular star cluster M4, located 5,600 light-years away in the summer constellation Scorpius. Globular clusters are deficient in heavier elements because they formed so early in the universe that heavier elements had not been cooked up in abundance in the nuclear furnaces of stars. Some astronomers have therefore argued that globular clusters cannot contain planets. This conclusion was bolstered in 1999 when Hubble failed to find close-orbiting “hot Jupiter”-type planets around the stars of the globular cluster 47 Tucanae. Now, it seems that astronomers were just looking in the wrong place, and that gas-giant worlds orbiting at greater distances from their stars could be common in globular clusters.

“Our Hubble measurement offers tantalizing evidence that planet formation processes are quite robust and efficient at making use of a small amount of heavier elements. This implies that planet formation happened very early in the universe,” says Steinn Sigurdsson of Pennsylvania State University.

“This is tremendously encouraging that planets are probably abundant in globular star clusters,” says Harvey Richer of the University of British Columbia. He bases this conclusion on the fact that a planet was uncovered in such an unlikely place, orbiting two captured stars ? a helium white dwarf and a rapidly spinning neutron star ? near the crowded core of a globular cluster, where fragile planetary systems tend to be ripped apart due to gravitational interactions with neighboring stars.

The story of this planet’s discovery began in 1988, when the pulsar, called PSR B1620-26, was discovered in M4. It is a neutron star spinning just under 100 times per second and emitting regular radio pulses like a lighthouse beam. The white dwarf was quickly found through its effect on the clock-like pulsar, as the two stars orbited each other twice per year. Sometime later, astronomers noticed further irregularities in the pulsar that implied that a third object was orbiting the others. This new object was suspected to be a planet, but it could also be a brown dwarf or a low-mass star. Debate over its true identity continued through the 1990s.

Sigurdsson, Richer, and their co-investigators settled the debate by at last measuring the planet’s actual mass through some ingenious celestial detective work. They had exquisite Hubble data from the mid-1990s, taken to study white dwarfs in M4. Sifting through these observations, they were able to detect the white dwarf orbiting the pulsar and measure its color and temperature. Using evolutionary models computed by Brad Hansen of the University of California, Los Angeles, the astronomers estimated the white dwarf’s mass. This in turn was compared to the amount of wobble in the pulsar’s signal, allowing the astronomers to calculate the tilt of the white dwarf’s orbit as seen from Earth. When combined with the radio studies of the wobbling pulsar, this critical piece of evidence told them the tilt of the planet’s orbit, too, and so the precise mass could at last be known. With a mass of only 2.5 Jupiters, the object is too small to be a star or brown dwarf, and must instead be a planet.

The planet has had a rough road over the last 13 billion years. When it was born, it probably orbited its youthful yellow sun at approximately the same distance Jupiter is from our Sun. The planet survived blistering ultraviolet radiation, supernova radiation, and shockwaves, which must have ravaged the young globular cluster in a furious firestorm of star birth in its early days. Around the time multi-celled life appeared on Earth, the planet and star were plunging into the core of M4. In this densely crowded region, the planet and its sun passed close to an ancient pulsar, formed in a supernova when the cluster was young, that had its own stellar companion. In a slow-motion gravitational dance, the sun and planet were captured by the pulsar, whose original companion was ejected into space and lost. The pulsar, sun, and planet were themselves flung by gravitational recoil into the less-dense outer regions of the cluster. Eventually, as the star aged it ballooned to a red giant and spilled matter onto the pulsar. The momentum carried with this matter caused the neutron star to “spin-up” and re-awaken as a millisecond pulsar. Meanwhile, the planet continued on its leisurely orbit at a distance of about 2 billion miles from the pair (approximately the same distance Uranus is from our Sun).

It is likely that the planet is a gas giant, without a solid surface like the Earth. Because it was formed so early in the life of the universe, it probably doesn’t have abundant quantities of elements such as carbon and oxygen. For these reasons, it is very improbable the planet would host life. Even if life arose on, for example, a solid moon orbiting the planet, it is unlikely to have survived the intense X-ray blast that would have accompanied the spin-up of the pulsar. Regrettably, it is unlikely that any civilization witnessed and recorded the dramatic history of this planet, which began at nearly the beginning of time itself.

Original Source: Hubble News Release