Staying in orbit can be challenging, at least for lower orbits that are more affected by Earth’s atmosphere. But, such orbits also come with advantages, such as better vantage points for new commercial operations such as Earth Observation and telecommunications connections. So there is an incentive for anyone who can figure out how to functionally keep a satellite in orbit at those lower altitudes for long periods. One of the best paths toward that goal seems to be an ion engine that takes in atmospheric particles and uses them for thrust. Now, a recently released paper explores potential use cases for such an engine and suggests a path toward their commercialization.
Continue reading “Air-Breathing ion Engines can Continuously Boost Spacecraft Anywhere There’s an Atmosphere”Subaru Telescope can now Analyze 2,400 Galaxies Simultaneously
First light is an exciting time for astronomers and engineers who help bring new telescopes up to speed. One of the most recent and significant first light milestones recently occurred at the Subaru Telescope in Hawai’i. Though it has been in operation since 2005, the National Astronomical Observatory of Japan’s (NAOJ) main telescope recently received an upgrade that will allow it to simultaneously observe 2400 astronomical objects at once over a patch of sky the size of several moons.
Continue reading “Subaru Telescope can now Analyze 2,400 Galaxies Simultaneously”Why ‘Contact’ still resonates after 25 years
25 years ago, the film Contact made its theatrical debut starring Jodie Foster and Matthew McConaughey and told the story of Dr. Eleanor Arroway (Jodie Foster) who picked up a radio signal from the star Vega and how this discovery impacted not just herself, but humanity as a whole. Over time, she discovers the signal has embedded instructions sent by the aliens to build a device capable of sending one person into outer space, presumably to meet the Vegans.
Continue reading “Why ‘Contact’ still resonates after 25 years”The First SLS Launch Caused Damage to the Launch Pad. How bad was it?
When you test launch the most powerful rocket ever successfully flown, there’s bound to be some collateral damage. With 8.8 million pounds of thrust at liftoff, NASA’s Space Launch System (SLS) packs a mighty punch (the Saturn V, which carried astronauts to the moon in 1969, produced 7.5 million pounds). After November 16’s test flight of SLS, dubbed Artemis I, the pad was a little worse for wear, but not outside of expected parameters, NASA officials say.
Continue reading “The First SLS Launch Caused Damage to the Launch Pad. How bad was it?”What Happened to those CubeSats that were Launched with Artemis I?
NASA made history on November 16th when the Artemis I mission took off from Launch Complex 39B at Cape Canaveral, Florida, on its way to the Moon. This uncrewed mission is testing the capabilities of the Space Launch System (SLS) and Orion spacecraft in preparation for the long-awaited return to the Moon in 2025 (the Artemis III mission). Rather than astronauts, this mission carries a group of mannequins with sensors and has a primary payload consisting of the Callisto technology demonstrator (a human-machine video interface system).
As a secondary payload, Artemis I also brought ten 6U CubeSats beyond Low Earth Orbit (LEO), three of which were NASA missions designed to perform experiments. The rest were built by partner space agencies, commercial space entities, research institutes, and universities to carry out a variety of unique deep-space science experiments. While all these satellites managed to deploy successfully, six have not made contact with controllers on the ground or since experienced problems, and their whereabouts remain unknown.
Continue reading “What Happened to those CubeSats that were Launched with Artemis I?”If We’re Going to Get Under the Ice on Europa, How Will We Send a Signal Back to the Surface?
If we send some type of nuclear-powered tunnelbot to Europa to seek life under its icy shield, how will we know what it finds? How can a probe immersed in water under all that ice communicate with Earth? We only have hints about the nature of that ice, what layers it has and what pockets of water it might hold.
All we know is that it’s tens of kilometres thick and as hard as granite.
Continue reading “If We’re Going to Get Under the Ice on Europa, How Will We Send a Signal Back to the Surface?”Mars Once had Enough Water for a Planet-Wide Ocean 300 Meters Deep
Today, Mars is colloquially known as the “Red Planet” on a count of how its dry, dusty landscape is rich in iron oxide (aka. “rust”). In addition, the atmosphere is extremely thin and cold, and no water can exist on the surface in any form other than ice. But as the Martian landscape and other lines of evidence attest, Mars was once a very different place, with a warmer, denser atmosphere and flowing water on its surface. For years, scientists have attempted to determine how long natural bodies existed on Mars and whether or not they were intermittent or persistent.
Another important question is how much water Mars once had and whether or not this was enough to support life. According to a new study by an international team of planetary scientists, Mars may have had enough water 4.5 billion years ago to cover it in a global ocean up to 300 meters (almost 1,000 feet) deep. Along with organic molecules and other elements distributed throughout the Solar System by asteroids and comets at this time, they argue, these conditions indicate that Mars may have been the first planet in the Solar System to support life.
Continue reading “Mars Once had Enough Water for a Planet-Wide Ocean 300 Meters Deep”What’s the Best Mix of Oceans to Land for a Habitable Planet?
Earth is about 29% land and 71% oceans. How significant is that mix for habitability? What does it tell us about exoplanet habitability?
Continue reading “What’s the Best Mix of Oceans to Land for a Habitable Planet?”With JWST Fully Operational Again, we get Images Like This: Saturn’s Moon Titan
On August 24th, a vital instrument aboard the James Webb Space Telescope (JWST) experienced a malfunction that prompted the mission team to take it offline. The problem occurred when the Mid-Infrared Instrument (MIRI) experienced increased friction in one of its wheels while in Medium-Resolution Spectroscopy (MRS) mode. The mission team took MIRI offline while they attempted to diagnose the problem, leaving the observatory to continue making observations in other modes.
This came shortly after Webb was hit by a large micrometeoroid in late May that caused damage to one of its primary mirror segments. Luckily, the damage this caused will not alter the telescope’s performance, and the mission team announced earlier this month that they had restored the MIRI to operational status. With everything in the green, Webb has once again turned its infrared optics to the cosmos and acquired some breathtaking images. This includes a new image of Saturn’s largest moon Titan, which recently appeared online.
Continue reading “With JWST Fully Operational Again, we get Images Like This: Saturn’s Moon Titan”A New Instrument Gives the Very Large Telescope an Even Sharper View of the Cosmos
The Very Large Telescope (VLT) at Cerro Paranal in northern Chile, is undoubtedly one of the premier ground-based observatories. But a new infrared instrument recently installed on the telescope has made the VLT even better.
The Enhanced Resolution Imager and Spectrograph (ERIS) was delivered to Chile in December, 2021 and the first test observations were carried out beginning in February of this year. ESO, the European Organization for Astronomical Research in the Southern Hemisphere, an international organization which coordinates the use of VLT and several other observatories, says this infrared instrument “will be able to see further and in finer detail, leading the way in Solar System, exoplanet and galaxy observations.”
Continue reading “A New Instrument Gives the Very Large Telescope an Even Sharper View of the Cosmos”