Largest JWST Image, First Private Interplanetary Mission, Space Bubbles VS Climate Change

Rocket Lab is launching the first-ever private mission to Venus. Europe is considering space-based solar power. A new method to detect exoplanets. More evidence about the Moon’s origins. Webb’s largest every image. All that and more in this week’s episode of Space Bites.

Continue reading “Largest JWST Image, First Private Interplanetary Mission, Space Bubbles VS Climate Change”

Astronomers Have Revealed a Black Hole's Photon Ring for the First Time

The calculated photon ring of M87*. Credit: Broderick, et al

In 2019 the Event Horizon Telescope gave us our first direct image of a black hole. It was a powerful image, but not one with much detail. It looks like a blurry orange donut. To be fair, the real meat of the discovery was in the data, not the image. And as a recent study shows, there’s a great deal more in the data than what we’ve seen.

Continue reading “Astronomers Have Revealed a Black Hole's Photon Ring for the First Time”

Has JWST Found Proto-Globular Clusters?

This image from VISTA is a tiny part of the VISTA Variables in the Via Lactea (VVV) survey that is systematically studying the central parts of the Milky Way in infrared light. On the right lies the globular star cluster UKS 1 and on the left lies a much less conspicuous new discovery, VVV CL001 — a previously unknown globular, one of just 160 known globular clusters in the Milky Way at the time of writing. The new globular appears as a faint grouping of stars about 25% of the width of the image from the left edge, and about 60% of the way from bottom to top. Credit: ESO/D. Minniti/VVV Team

The James Webb Space Telescope continues to deliver surprise after surprise. Next up, a team of astronomers have identified likely candidates for proto-globular clusters. Clusters like these can help astronomers understand the evolution and ultimate fate of galaxies like our own.

Continue reading “Has JWST Found Proto-Globular Clusters?”

What is the Maximum Number of Moons that Earth Could Have?

In a recent study published in Earth and Planetary Astrophysics, a team of researchers from the University of Texas at Arlington, Valdosta State University, Georgia Institute of Technology, and the National Radio Astronomy Observatory estimated how many moons could theoretically orbit the Earth while maintaining present conditions such as orbital stability. This study opens the potential for better understanding planetary formation processes which could also be applied to identifying exomoons possibly orbiting Earth-like exoplanets, as well.

Continue reading “What is the Maximum Number of Moons that Earth Could Have?”

Cyanobacteria Will be our Best Partner for Living on Mars

Illustration of a photobioreactor as a means of growing building materials on Mars. Credit: Joris Wegner/ZARM/Universität Bremen

Scientists, futurists, and fans of science fiction alike have all dreamed that someday, humans would set foot on Mars. With the dozens of robotic orbiters, landers, rovers, and aerial vehicles we have sent there since the turn of the century (and the crewed missions that will follow in the next decade), the prospect that humans might settle on the Red Planet is once again a popular idea. Granted, the challenges of getting people there are monumental, to say nothing of the challenges (and hazards) associated with living there.

No matter how many people are willing to make a one-way trip and commit to living on Mars, establishing an outpost of humanity there will require some serious innovation and creative thinking! According to a new study by an international research team led by the Center of Applied Space Technology and Microgravity (ZARM), cyanobacteria might be able to withstand the difficult conditions and even thrive in Martian soil. This research suggests that astronauts could create biomass on Mars that would create a biological cycle.

Continue reading “Cyanobacteria Will be our Best Partner for Living on Mars”

A New Image From Webb Shows Galaxy NGC 1365, Known to Have an Actively Feeding Supermassive Black Hole

The barred spiral galaxy NGC 1365. Credit: NASA/JPL-Caltech/Judy Schmidt

The James Webb Space Telescope continues to deliver stunning images of the Universe, demonstrating that the years of development and delays were well worth the wait! The latest comes from Judy Schmidt (aka. Geckzilla, SpaceGeck), an astrophotographer who processed an image taken by Webb of the barred spiral galaxy NGC 1365. Also known as the Great Barred Spiral Galaxy, NGC 1365 is a double-barred spiral galaxy consisting of a long bar and a smaller barred structure located about 56 million light-years away in the southern constellation Fornax.

Continue reading “A New Image From Webb Shows Galaxy NGC 1365, Known to Have an Actively Feeding Supermassive Black Hole”

Would We Have Continents Without Asteroid Impacts?

continents
An impact between a Mars-sized protoplanet and early Earth is the most widely-accepted origin of the Moon. Did smaller impacts seed the formation of continents? (NASA/JPL-Caltech)

Early Earth was a wild and wooly place. In its first billion years, during a period called the Archean, our planet was still hot from its formation. Essentially, the surface was lava for millions of years. Asteroids bombarded the planet, and the place was still recovering from the impact that formed the Moon. Oceans were beginning to form as the surface solidified and water outgassed from the rock. The earliest atmosphere was actually rock vapor, followed quickly by the growth of a largely hot carbon dioxide and water vapor blanket. Earth was just starting land masses that later became continents. For decades, geologists have asked: what started continental formation?

Continue reading “Would We Have Continents Without Asteroid Impacts?”