Gaze at New Pictures of the Sun from Solar Orbiter

The Solar Orbiter has captured the highest resolution images of the Sun ever during a recent close encounter. The detail is extraordinary. Image Credit: ESA - European Space Agency

74 million kilometres is a huge distance from which to observe something. But 74 million km isn’t such a big deal when the object is the Sun.

That’s how far away from the Sun the ESA/NASA Solar Orbiter was when it captured these new images.

Continue reading “Gaze at New Pictures of the Sun from Solar Orbiter”

Are Fast Radio Bursts Caused by Interstellar Objects Crashing Into Neutron Stars?

This magnetar is a highly magnetized neutron star. This artist's illustration shows an outburst from a magnetar. Neutron stars that spin rapidly and give out radiation are called pulsars, and specific pulsars are rare in the core of the Milky Way. Credit: NASA/JPL-CalTech
This magnetar is a highly magnetized neutron star. This artist's illustration shows an outburst from a magnetar. Neutron stars that spin rapidly and give out radiation are called pulsars, and specific pulsars are rare in the core of the Milky Way. Credit: NASA/JPL-CalTech

Every now and then, astronomers will detect an odd kind of radio signal. So powerful it can outshine a galaxy, but lasting only milliseconds. They are known as fast radio bursts (FRBs). When they were first discovered a couple of decades ago, we had no idea what might cause them. We weren’t even sure if they were astronomical in origin. FRB’s were so localized and so short-lived, it was difficult to gather data on them. But with wide-field radio telescopes such as CHIME we can now observe FRBs regularly and have a pretty good idea of their source: magnetars.

Continue reading “Are Fast Radio Bursts Caused by Interstellar Objects Crashing Into Neutron Stars?”

Here’s How to Weigh Gigantic Filaments of Dark Matter

Artist concept of how a galaxy might accrete mass from rapid, narrow streams of cold gas. These filaments provide the galaxy with continuous flows of raw material to feed its star-forming at a rather leisurely pace. Credit: ESA–AOES Medialab

How do you weigh one of the largest objects in the entire universe? Very carefully, according to new research.

Continue reading “Here’s How to Weigh Gigantic Filaments of Dark Matter”

How Could Astronauts Call for Help from the Moon?

Exploring the Moon poses significant risks, with its extreme environment and hazardous terrain presenting numerous challenges. In the event of a major accident, assistance might take days or even weeks to arrive. To address this, Australian researchers have created a distress alert system based upon the COSPAS-SARSAT technology used for Earth-based search and rescue operations. It relies on low-power emergency beacons that astronauts could activate with minimal setup and use a planned lunar satellite network for communication and rescue coordination.

Continue reading “How Could Astronauts Call for Help from the Moon?”

There Was a 15 Minute Warning Before Tonga Volcano Exploded

Infrared satellite image (10.4 ?m) taken by Himawari-8 for the last reported event on January 14

Volcanoes are not restricted to the land, there are many undersea versions. One such undersea volcano known as Hunga Tonga-Hunga Ha’apai off the coast of Tonga. On 15th January 2022, it underwent an eruption which was one of the most powerful in recent memory. A recent paper shows that seismic waves were released 15 minutes before the eruption and before any visible disruption at the surface. The waves had been detected by a seismic station 750km away. This is the first time a precursor signal has been detected. 

Continue reading “There Was a 15 Minute Warning Before Tonga Volcano Exploded”

Main Sequence and White Dwarf Binaries are Hiding in Plain Sight

This ALMA image shows the binary HD101584. The pair of stars share a common envelope, and are surrounded by complex clouds of gas. Image Credit: By ALMA, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=86644758

Some binary stars are unusual. They contain a main sequence star like our Sun, while the other is a “dead” white dwarf star that left fusion behind and emanates only residual heat. When the main sequence star ages into a red giant, the two stars share a common envelope.

This common envelope phase is a big mystery in astrophysics, and to understand what’s happening, astronomers are building a catalogue of main sequence-white dwarf binaries.

Continue reading “Main Sequence and White Dwarf Binaries are Hiding in Plain Sight”

What a Misplaced Meteorite Told Us About Mars

The Lafayette Meteorite was chipped off the surface of Mars and then sped through space for roughly 11 million years. It eventually found its way into a drawer at Purdue University in 1931 and has since been teaching scientists about Mars. (Photo provided by Purdue Brand Studio.)

11 million years ago, Mars was a frigid, dry, dead world, just like it is now. Something slammed into the unfortunate planet, sending debris into space. A piece of that debris made it to Earth, found its way into a drawer at Purdue University, and then was subsequently forgotten about.

Until 1931, when scientists studied and realized it came directly from Mars. What has it told them about the red planet?

Continue reading “What a Misplaced Meteorite Told Us About Mars”

Uranus is Getting Colder and Now We Know Why

This zoomed-in image of Uranus, captured by Webb’s Near-Infrared Camera (NIRCam) Feb. 6, 2023, reveals stunning views of the planet’s rings. The planet's upper atmosphere has been cooling for decades, New research has an explanation. Credit: NASA, ESA, CSA, STScI IMAGE PROCESSING: Joseph DePasquale (STScI).

Uranus is an oddball among the Solar System’s planets. While most planets’ axis of rotation is perpendicular to their orbital plane, Uranus has an extreme tilt angle of 98 degrees. It’s flopped over on its side, likely from an ancient collision. It also has a retrograde rotation, opposite of the other planets.

The ice giant also has an unusual relationship with the Sun that sets it apart from other planets.

Continue reading “Uranus is Getting Colder and Now We Know Why”

How Scientists Repurposed a Camera on ESA’s Mars Express Mission

Mars
A full-disk view of Mars, courtesy of VMC. Credit: ESA

A camera aboard the Mars Express orbiter finds a new lease on life.

Sometimes, limitations can lead to innovation. A recent paper highlights how researchers are utilizing the VMC (Visual Monitoring Camera) aboard the European Space Agency’s (ESA) venerable Mars Express orbiter.

The work is a collaboration between the European Space Agency (ESA) and the University of the Basque Country.

Continue reading “How Scientists Repurposed a Camera on ESA’s Mars Express Mission”

SpIRIT CubeSat Demonstrates a Operational Gamma and X-Ray Detector

CubeSats are becoming more and more capable, and it seems like every month, another CubeSat is launched doing something new and novel. So far, technology demonstration has been one of the primary goals of those missions, though the industry is moving into playing an active role in scientific discovery. However, there are still some hurdles to jump before CubeSats have as many scientific tools at their disposal as larger satellites. That is where the Space Industry Responsive Intelligent Thermal (SpIRIT) CubeSat, the first from the Univeristy of Melbourne’s Space Lab, hopes to make an impact. Late in 2023, it launched with a few novel systems to operate new scientific equipment, and its leaders published a paper a few months ago detailing the progress of its mission so far.

Continue reading “SpIRIT CubeSat Demonstrates a Operational Gamma and X-Ray Detector”