New Study Examines How Extraterrestrial Civilizations Could Become “Stellarvores.”

Artist's impression of accretion in a binary system. Credit: ESO/L. Calçada

One of the most challenging aspects of astrobiology and the Search for Extraterrestrial Intelligence (SETI) is anticipating what life and extraterrestrial civilizations will look like. Invariably, we have only one example of a planet that supports life (Earth) and one example of a technologically advanced civilization (humanity) upon which to base our theories. As for more advanced civilizations, which statistically seems more likely, scientists are limited to projections of our own development. However, these same projections offer constraints on what SETI researchers should search for and provide hints about our future development.

In a series of papers led by the Blue Marble Space Institute of Science (BMSIS), a team of researchers examines what Earth’s level of technological development (aka. “technosphere”) will look like in the future. In the most recent installment, they offer a reinterpretation of the Kardashev Scale, which suggests that civilizations expand to harness greater levels of energy (planet, host star, and galaxy). Instead, they suggest that the Kardashev Scale establishes upper limits on the amount of stellar energy a civilization can harness (a “luminosity limit”) and that civilizations might circumvent this by harnessing stellar mass directly.

Continue reading “New Study Examines How Extraterrestrial Civilizations Could Become “Stellarvores.””

A Screw-Driven Robot Could Autonomously Mine Rocky Worlds

Navigating the harsh terrain of other rocky worlds has consistently been challenging. The Free Spirit campaign unfortunately failed in its goal to will the plucky Martian rover out of the morass it found itself in, despite two years of continual effort from some of the world’s best engineers. To combat this difficulty, other engineers have turned to alternative propulsion methods, and a team of researchers in the EU have done just that for their work on an autonomous mining robot. They decided to use an Archimedes screw as their primary propulsion method.

Continue reading “A Screw-Driven Robot Could Autonomously Mine Rocky Worlds”

How Life Could Live Under the Ice on Mars

Water ice in a Martian gully. This image, showing part of a region called Dao Vallis, was captured by NASA’s Mars Reconnaissance Orbiter in 2009. Credit: NASA/JPL-Caltech/University of Arizona

Mars has been a fascination to us for centuries. Early observations falsely gave impressions of an intelligent civilisation but early visiting probes revealed a stark, desolate world. Underneath the surface is a few metres of water ice and a recent study by NASA suggests sunlight could reach the layer. If it does, it may allow photosynthesis in the meltwater. On Earth this actually happened and biologists have found similar pools teeming with life. 

Continue reading “How Life Could Live Under the Ice on Mars”

NASA’s JPL Lays Off Another 325 People

NASA's JPL announced a reduction in its workforce for the second time in 2024. Credit: NASA/JPL/Caltech

NASA’s Jet Propulsion Lab has announced a second round of layoffs for 2024, this time laying off 325 people – about 5% of its workforce. The announcement was made on Nov. 12 in a memo sent to employees, which notes the layoffs could have been even larger. The last cut was made this past February, when 530 employees were let go. Part of the issues which forced the layoffs comes from the the possible cancelation of the Mars Sample Return mission. With the October 2024 launch of Europa Clipper, JPL doesn’t have a flagship mission in the pipeline right now.

Continue reading “NASA’s JPL Lays Off Another 325 People”

Lessons From Ancient Earth’s Atmosphere: From Hostile to Hospitable

Earth's ancient atmosphere was much different than now. How did it transition from hostile to hospitable? If scientists can figure that out, they'll be better able to understand exoplanets and their atmospheres. Image Credit: Tohoku University

Will we ever understand how life got started on Earth? We’ve learned much about Earth’s long, multi-billion-year history, but a detailed understanding of how the planet’s atmospheric chemistry evolved still eludes us. At one time, Earth was atmospherically hostile, and its transition from that state to a planet teeming with life followed a complex path.

Continue reading “Lessons From Ancient Earth’s Atmosphere: From Hostile to Hospitable”

Astronomers Defy the Zone of Avoidance to Find Hundreds of New Galaxies

A rendered image of the Milky Way based on the Gaia EDR3 dataset. Credit: Wikipedia user Kevinmloch

There is a region of the sky where astronomers fear to look. Filled with dark clouds of dust, it hides an unseen mass. A mass so large it is pulling the Milky Way and other galaxies toward it…

Continue reading “Astronomers Defy the Zone of Avoidance to Find Hundreds of New Galaxies”

An Otherworldly Cloud Over New Zealand

Landsat 8’s Operational Land Imager captured this unique lenticular cloud that forms over the Otago region of New Zealand’s South Island. Image Credit: NASA/Lauren Dauphin; USGS

Filmmakers love New Zealand. Its landscapes evoke other worlds, which explains why so much of The Lord of the Rings was filmed there. The country has everything from long, subtropical sandy beaches to active volcanoes.

The country’s otherworldliness extends into its atmosphere, where a cloud nicknamed the “Taieri Pet” forms when conditions are right.

Continue reading “An Otherworldly Cloud Over New Zealand”

Early Black Holes Fed 40x Faster than Should Be Possible

This artist’s illustration shows a red, early-Universe dwarf galaxy that hosts a rapidly feeding black hole at its center. Using data from NASA's JWST and Chandra X-ray Observatory, a team of U.S. National Science Foundation NOIRLab astronomers have discovered this low-mass supermassive black hole at the center of a galaxy just 1.5 billion years after the Big Bang. It is accreting matter at a phenomenal rate — over 40 times the theoretical limit. While short lived, this black hole’s ‘feast’ could help astronomers explain how supermassive black holes grew so quickly in the early Universe.

The theory goes that black holes accrete material, often from nearby stars. However the theory also suggests there is a limit to how big a black hole can grow due to accretion and certainly shouldn’t be as large as they are seen to be in the early Universe. Black holes it seems, are fighting back and don’t care about those limits! A recent study shows that supermassive black holes are growing at rates that defy the limits of current theory. Astronomers just need to figure out how they’re doing it! 

Continue reading “Early Black Holes Fed 40x Faster than Should Be Possible”

A Spider Stellar Engine Could Move Binary Stars Halfway Across a Galaxy

Illustration of a millisecond pulsar consuming material from a companion star. Pulsars that evaporate their companions rather than consuming them could serve as stellar engines. Credit: NASA / GSFC SVS / Dana Berry

Eventually, every stellar civilization will have to migrate to a different star. The habitable zone around all stars changes as they age. If long-lived technological civilizations are even plausible in our Universe, migration will be necessary, eventually.

Could Extraterrestrial Intelligences (ETIs) use stars themselves as stellar engines in their migrations?

Continue reading “A Spider Stellar Engine Could Move Binary Stars Halfway Across a Galaxy”

Scaling Propellant Production on Mars is Hard

Putting humans on Mars has been one of NASA’s driving missions for years, but they are still in the early stages of deciding what exactly that mission architecture will look like. One major factor is where to get the propellant to send the astronauts back to Earth. Advocates of space exploration often suggest harvesting the necessary propellant from Mars itself – some materials can be used to create liquid oxygen and methane, two commonly used propellants. To support this effort, a group from NASA’s COMPASS team detailed several scenarios of the infrastructure and technologies it would take to make an in-situ resource utilization (ISRU) system that could provide enough propellant to get astronauts back to a Mars orbit where they could meet up with an Earth return vehicle. However, there are significant challenges to implementing such a system, and they must be addressed before the 8-9-year process of getting the system up and running can begin.

Continue reading “Scaling Propellant Production on Mars is Hard”