Astronomers Might Have Detected the Background Gravitational Waves of the Universe
A new data release from a gravitational wave consortium has revealed indications of the long sough-after gravitational wave background (GWB).
A new data release from a gravitational wave consortium has revealed indications of the long sough-after gravitational wave background (GWB).
One of the questions underpinning both philosophy and science is “why are we here”? Ask an astrophysicist, and they might answer with an imbalance between matter and antimatter at the beginning of the universe. While that is a (relatively) simple explanation, it then begs the question – why was there an imbalance in the first …
New observations put further constraints on primordial gravitational waves, but still haven’t found them yet.
The tumultuous era of the big bang may have been chaotic enough to flood the universe with primordial black holes. Eventually some of those black holes will find each other and merge, sending out ripples of gravitational waves. A comprehensive search for those gravitational wave signatures hasn’t found anything, putting tight constraints on the abundance …
The Big Bang remains the best way to explain what happened at the beginning of the Universe. However, the incredible energies flowing during the early part of the bang are almost incomprehensive to our everyday experience. Luckily, computers aren’t so attached to normal human ways of thinking and have long been used to model …
Continue reading “Simulating the Universe a Trillionth of a Second After the Big Bang”
The successful detection of gravitational waves has been a game-changer for astronomy. And now the new frontier is in space, with satellite-based detection systems currently in development that will uncover some of the universe’s biggest mysteries. And while the team behind LISA is now developing that observatory in space, it just may be outclassed by …
It’s kind of hard to see inside a star as it’s blowing up, because of the whole “blowing up” part, but gravitational waves – tiny ripples in the fabric of spacetime itself – may help astronomers unlock how the biggest stars die.
A series of studies has shown that the seeds of supermassive black holes and relativistic jets existed much sooner than expected
Physicists have developed an atomic clock so accurate that it would be off by less than a single second in 14 billion years. That kind of accuracy and precision makes it more than just a timepiece. It’s a powerful scientific instrument that could measure gravitational waves, take the measure of the Earth’s gravitational shape, and …
Neutron stars scream in waves of spacetime when they die, and astronomers have outlined a plan to use their gravitational agony to trace the history of the universe. Join us as we explore how to turn their pain into our cosmological profit.