Flying to (Hypothetical) Planet 9: Why visit it, how could we get there, and would it surprise us like Pluto?

In a recent study submitted to Earth and Planetary Astrophysics, an international team of researchers discuss the various mission design options for reaching a hypothetical Planet 9, also known as “Planet X”, which state-of-the-art models currently estimate to possess a semi-major axis of approximately 400 astronomical units (AU). The researchers postulate that sending a spacecraft to Planet 9 could pose scientific benefits much like when NASA’s New Horizons spacecraft visited Pluto in 2015. But does Planet 9 actually exist?

Continue reading “Flying to (Hypothetical) Planet 9: Why visit it, how could we get there, and would it surprise us like Pluto?”

On its Hunt for Dark Energy, a Telescope Stopped to Look at the Lobster Nebula

The Lobster Nebula NGC 6357 as seen by the Dark Energy Camera. Credit: CTIO/NOIRLab/DOE/NSF/AURA
The Lobster Nebula NGC 6357 as seen by the Dark Energy Camera. Credit: CTIO/NOIRLab/DOE/NSF/AURA

If you thought dark matter was difficult to study, studying dark energy is even more challenging. Dark energy is perhaps the most subtle phenomenon in the universe. It drives the evolution of the cosmos, but its effects are only seen on intergalactic scales. So to study dark energy in detail, you need a great deal of observations of wide areas of the sky.

Continue reading “On its Hunt for Dark Energy, a Telescope Stopped to Look at the Lobster Nebula”

Massive Stars don’t Always Grow Their own Planets. Sometimes They Steal Them

Artist's conception of early planetary formation from gas and dust around a young star. Outbursts from newborn and adolescent stars might drive planetary water beneath the surface of rocky worlds. Credit: NASA/NASA/JPL-Caltech

Recently astronomers have discovered Jupiter-sized planets orbiting at extremely large distances from giant stars. How can these stars end up with such big planets at such extreme orbits? A team of researchers has proposed that the answer is that the stars steal those planets from their neighbors.

Continue reading “Massive Stars don’t Always Grow Their own Planets. Sometimes They Steal Them”

Alien Artifacts Could Be Hidden Across the Solar System. Here’s how we Could Search for Them.

Galileo Project members (from left: Carson Ezell, Ezra Kelderman, Abby White, Alex and Lily Delacroix) with the audio tower (left), radar spectrum tower (middle) and radar imaging tower (right) behind them on the roof of the Harvard College Observatory.
Galileo Project members (from left: Carson Ezell, Ezra Kelderman, Abby White, Alex and Lily Delacroix) with the audio tower (left), radar spectrum tower (middle) and radar imaging tower (right) behind them on the roof of the Harvard College Observatory. Image credit: The Galileo Project

Do aliens exist? Almost certainly. The universe is vast and ancient, and our corner of it is not particularly special. If life emerged here, it probably did elsewhere. Keep in mind this is a super broad assumption. A single instance of fossilized archaebacteria-like organisms five superclusters away would be all it takes to say, “Yes, there are aliens!” …if we could find them somehow.

Continue reading “Alien Artifacts Could Be Hidden Across the Solar System. Here’s how we Could Search for Them.”

Galactic Photobombing

These two spiral galaxies appear to be colliding, but are only overlapping from our vantage point at Earth. Credit: ESA/Hubble & NASA, W. Keel/Galaxy Zoo.

This image, taken by the Hubble Space Telescope, appears to show two spiral galaxies colliding. In fact, they are just overlapping from our vantage point and are likely quite distant from each other. The galaxies are named SDSS J115331 and LEDA 2073461, and they lie more than a billion light-years from Earth. This ‘photobombing’ of one galaxy getting in the same picture as another was originally found by volunteers from the Galaxy Zoo project, which uses the power of crowdsourcing to find unusual galaxies in our Universe.

Continue reading “Galactic Photobombing”

Want to Stay Healthy in Space? Then you Want Artificial Gravity

A close up of three fruit flies, used for scientific research both on Earth and in space. Credits: NASA Ames Research Center/Dominic Hart

Space travel presents numerous challenges, not the least of which have to do with astronaut health and safety. And the farther these missions venture from Earth, the more significant they become. Beyond Earth’s protective atmosphere and magnetosphere, there’s the threat of long-term exposure to solar and cosmic radiation. But whereas radiation exposure can be mitigated with proper shielding, there are few strategies available for dealing with the other major hazard: long-term exposure to microgravity.

Aboard the International Space Station (ISS), astronauts rely on a strict regimen of exercise and resistance training to mitigate the physiological effects. These include muscle atrophy, bone density loss, organ function, eyesight, and effects on cardiovascular health, gene expression, and the central nervous system. But as a recent NASA study revealed, long-duration missions to Mars and other locations in deep space will need to be equipped with artificial gravity. This study examined the effects of microgravity on fruit flies aboard the ISS and demonstrated artificial gravity provides partial protection against those changes.

Continue reading “Want to Stay Healthy in Space? Then you Want Artificial Gravity”

The Webb Image you’ve Been Waiting For: the Orion Nebula

Orion Nebula by JWST
The inner region of the Orion Nebula as seen by the James Webb Space Telescope’s NIRCam instrument. Credit: NASA, ESA, CSA, PDRs4All ERS Team; image processing Salomé Fuenmayor

This is it, folks. Feast your eyes! It’s what we’ve been training for—seeing the James Webb Space Telescope’s first detailed view of the Orion Nebula! JWST’s NIRCam gazed at this starbirth nursery and revealed incredible details hidden from view by gas and dust clouds.

Continue reading “The Webb Image you’ve Been Waiting For: the Orion Nebula”

Solar Orbiter was hit by a Coronal Mass Ejection as it was About to Make a Flyby of Venus

Massive solar storms on the Sun are becoming more common as it moves into a period of increasing solar activity as part of Solar Cycle 25, which is expected to peak in 2025. There’s one spacecraft that will be very well placed to capture that increasing activity. Solar Orbiter is currently 25% of the way through its ten-year mission of observing the Sun. By 2025 it will be closer than ever to our parent star, and it has already started observing some fantastic phenomena from our Sun.

Continue reading “Solar Orbiter was hit by a Coronal Mass Ejection as it was About to Make a Flyby of Venus”

NASA Chooses a Supplier to Build its Moonwalking Spacesuits

Axiom will provide the next generation astronaut spacesuits to NASA to support the Artemis lunar missions. Credit: Axiom

NASA announced they have chosen Axiom Space to build the spacesuits for the next astronauts to walk on the Moon. The spacesuits will be used on the Artemis III mission, which is planned to land the first woman and the first person of color on the lunar surface.

Axiom Space says the new spacesuits will provide astronauts with advanced capabilities for space exploration while providing NASA commercially developed human systems needed to access, live, and work in microgravity as well as on and around the Moon.

Continue reading “NASA Chooses a Supplier to Build its Moonwalking Spacesuits”

It’s Thought to Rain Diamonds on Uranus and Neptune, and now Scientists Duplicated it in the lab

An experiment conducted by an international team of scientists recreated the "diamond rain" believed to exist in the interiors of ice giants like Uranus and Neptune. Credit: Greg Stewart/SLAC National Accelerator Laboratory

The ice giant planets of Neptune and Uranus might have just the right conditions to rain diamonds. Unfortunately we can’t go and check ourselves, so we have to rely on laboratory recreations of their atmospheres to find out. And so that’s exactly what a team of physicist did: they used a vaporized form of common plastics to find out how quickly and how easily diamonds could grow in those kinds of conditions.

Continue reading “It’s Thought to Rain Diamonds on Uranus and Neptune, and now Scientists Duplicated it in the lab”