A new Kind of Solar Sail Could let us Explore Difficult Places to Reach in the Solar System

Solar sailing technology has been a dream of many for decades. The simple elegance of sailing on the light waves of the sun does have a dreamy aspect to it that has captured the imagination of engineers as well as writers. However, the practicalities of the amount of energy received compared to that needed to move useful payloads have brought those dreams back to reality. Now, a team led by Amber Dubill of John Hopkins University Applied Physics Laboratory and supported by the NASA Innovative Advanced Concepts (NIAC) program is developing new solar sail architecture that might have already found its killer app – heliophysics.

Continue reading “A new Kind of Solar Sail Could let us Explore Difficult Places to Reach in the Solar System”

ESA is Developing Microbe-Killing Coatings to Make Spaceflight Healthier

Humans aren’t the only living things in place onboard the ISS. Bacteria, which has found a way to integrate itself into every biome on Earth, has also found a home in the aseptic microgravity of the space station high above it. Unfortunately, this poses a hazard to both the astronauts that live on the ISS and the station itself. But now, a team of researchers funded by ESA and the Instituto Italiano di Tecnologia (IIT) think they have a solution – make the surfaces on the ISS antimicrobial.

Continue reading “ESA is Developing Microbe-Killing Coatings to Make Spaceflight Healthier”

Gaze Into the Heart of a Grand Spiral Galaxy

Image Credit: NASA, ESA, A. Filippenko (University of California - Berkeley), and D. Sand (University of Arizona); Image Processing: G. Kober (NASA Goddard/Catholic University of America)

Here’s Hubble doing what Hubble does best.

Some of the Hubble Space Telescope’s most famous and stunning images are of distant galaxies, and this one is drop-dead gorgeous too.

Continue reading “Gaze Into the Heart of a Grand Spiral Galaxy”

Planets in Binary Systems Could be Habitable, But They’d Form Differently

An artist's illustration of a planet orbiting a binary star. Image Credit: ESA/NASA/Hubble

Most of the stars in the Milky Way are single stars. But between one-third and one-half of them are binary stars. Can habitable planets form in these environments?

New research shows that habitable planets could exist around binary stars, but they would form differently than worlds around single stars.

Continue reading “Planets in Binary Systems Could be Habitable, But They’d Form Differently”

Gaia is an Even More Powerful Planet Hunter Than we Thought

Utilizing tools for purposes they weren’t initially intended for is a strength of the astronomical community. Scrounging through data collected for one purpose and looking for hints of another seems to be a favorite pastime of many a professional astronomer. That tradition is alive and well, with a team reanalyzing the first few data sets from Gaia, ESA’s star cataloging explorer. They found hints of exoplanets, and it turns out the probe launched in 2013 is a much better planet hunter than initially thought.

Continue reading “Gaia is an Even More Powerful Planet Hunter Than we Thought”

The Dream of Faster-than-Light (FTL) Travel: Dr. Harold “Sonny” White and Limitless Space

Ever since astronomers found that Earth and the Solar System are not unique in the cosmos, humanity has dreamed of the day when we might explore nearby stars and settle extrasolar planets. Unfortunately, the laws of physics impose strict limitations on how fast things can travel in our Universe, otherwise known as Einstein’s General Theory of Relativity. Per this theory, the speed of light is constant and absolute, and objects approaching it will experience an increase in their inertial mass (thereby requiring more mass to accelerate further).

While no object can ever reach or exceed the speed of light, there may be a loophole that allows for Faster-Than-Light (FTL) travel. It’s known as the Alcubierre Warp Metric, which describes a warp field that contracts spacetime in front of a spacecraft and expands it behind. This would allow the spacecraft to effectively travel faster than the speed of light while not violating Relativity or causality. For more than a decade, Dr. Harold “Sonny” White has been investigating this theory in the hopes of bringing it closer to reality.

Previously, Dr. White pursued the development of an Alcubierre Warp Drive with his colleagues at the Advanced Propulsion Physics Research Laboratory (NASA Eagleworks) at NASA’s Johnson Space Center. In 2020, he began working with engineers and scientists at the Limitless Space Institute, a non-profit organization dedicated to education, outreach, research grants, and the development of advanced propulsion methods – which they hope will culminate in the creation of the first warp drive!

Continue reading “The Dream of Faster-than-Light (FTL) Travel: Dr. Harold “Sonny” White and Limitless Space”

A new Quantum Technique Could Enable Telescopes the Size of Planet Earth

These annotated images, obtained with the GRAVITY instrument on ESO’s Very Large Telescope Interferometer (VLTI) between March and July 2021, show stars orbiting very close to Sgr A*, the supermassive black hole at the heart of the Milky Way. One of these stars, named S29, was observed as it was making its closest approach to the black hole at 13 billion kilometres, just 90 times the distance between the Sun and Earth. Another star, named S300, was detected for the first time in the new VLTI observations. To obtain the new images, the astronomers used a machine-learning technique, called Information Field Theory. They made a model of how the real sources may look, simulated how GRAVITY would see them, and compared this simulation with GRAVITY observations. This allowed them to find and track stars around Sagittarius A* with unparalleled depth and accuracy.

There’s a revolution underway in astronomy. In fact, you might say there are several. In the past ten years, exoplanet studies have advanced considerably, gravitational wave astronomy has emerged as a new field, and the first images of supermassive black holes (SMBHs) have been captured. A related field, interferometry, has also advanced incredibly thanks to highly-sensitive instruments and the ability to share and combine data from observatories worldwide. In particular, the science of very-long baseline interferometry (VLBI) is opening entirely new realms of possibility.

According to a recent study by researchers from Australia and Singapore, a new quantum technique could enhance optical VLBI. It’s known as Stimulated Raman Adiabatic Passage (STIRAP), which – in combination with pre-distributed entanglement – allows quantum information to be transferred without losses. When imprinted into a quantum error correction code, this technique could allow for VLBI observations into previously inaccessible wavelengths. Once integrated with next-generation instruments, this technique could allow for more detailed studies of black holes, exoplanets, the Solar System, and the surfaces of distant stars.

Continue reading “A new Quantum Technique Could Enable Telescopes the Size of Planet Earth”

Voyager 1 is Sending Home Strange Telemetry Data

Old computer systems have a lot of wacky ways to fail. Computers that are constantly blasted by radiation have even more wacky ways to fail. Combine those two attributes, and eventually, you’re bound to have something happen. It certainly seems to have with Voyager 1. The space probe, which has been in active service for NASA for almost 45 years, is sending back telemetry data that doesn’t make any sense. 

Continue reading “Voyager 1 is Sending Home Strange Telemetry Data”

The Building Blocks for Supermassive Black Holes are Found in Dwarf Galaxies

The newly discovered massive black holes reside in dwarf galaxies, where their radiation competes with the light of abundant young stars. (Original image by NASA & ESA/Hubble, artistic conception of black hole with jet by M. Polimera.)

We all know that a humongous black hole exists at the center of our galaxy. It’s called Sagittarius A* (Sgr A* for short) and it has the mass of 4 million suns. We’ve got to see a radio image of it a few weeks back, showing its accretion disk. So, we know it’s there. Astronomers can chart its actions as it gobbles up matter occasionally and they can see how it affects nearby stars. What astronomers are still trying to understand is how Sgr A* formed.

Continue reading “The Building Blocks for Supermassive Black Holes are Found in Dwarf Galaxies”

“Wind-Ruffled Waves, Foam and Wave Shadows, Above Natural Blue Seawater.” This is how we’ll Spot Exoplanets With Oceans

Artist's depiction of a waterworld. A new study suggests that Earth is in a minority when it comes to planets, and that most habitable planets may be greater than 90% ocean. Credit: David A. Aguilar (CfA)
Artist's depiction of a waterworld. A new study suggests that Earth is in a minority when it comes to planets, and that most habitable planets may be greater than 90% ocean. Credit: David A. Aguilar (CfA)

Our planet’s oceans generate tell-tale light signatures when sunlight reflects off them. Exoplanets with significant ocean coverage may do the same. Can we use the Earth’s reflectance signatures to identify other Earth-like worlds with large oceans?

We should be able to, eventually.

Continue reading ““Wind-Ruffled Waves, Foam and Wave Shadows, Above Natural Blue Seawater.” This is how we’ll Spot Exoplanets With Oceans”