Astronomy Jargon 101: Trans-Neptunian Objects

This composite image of the primordial contact binary Kuiper Belt object 2014 MU69 (officially named Arrokoth) was compiled from data obtained by NASA's New Horizons spacecraft as it flew by the object on Jan. 1, 2019. The image combines enhanced color data (close to what the human eye would see) with detailed high-resolution panchromatic pictures. Credits: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute//Roman Tkachenko
This composite image of the primordial contact binary Kuiper Belt object 2014 MU69 (officially named Arrokoth) was compiled from data obtained by NASA's New Horizons spacecraft as it flew by the object on Jan. 1, 2019. The image combines enhanced color data (close to what the human eye would see) with detailed high-resolution panchromatic pictures. Credits: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute//Roman Tkachenko

In this series we are exploring the weird and wonderful world of astronomy jargon! You’ll be far from home in today’s topic: trans-Neptunian objects!

Continue reading “Astronomy Jargon 101: Trans-Neptunian Objects”

Star Formation Simulated in the lab, Using Lasers, of Course

Illustration of the evolution of a massive cloud which indicates the importance of SNR propagation in forming new stars. CREDIT: Albertazzi et al.

The vacuum of space isn’t really a vacuum. A vacuum is defined by Merriam-Webster as “a space absolutely devoid of matter.” However, even empty space has some matter in it. This matter, in the form of dust and gas, tends to collect into what are called molecular clouds. Without anything interfering with them they continue to float as a cloud.

When something happens to interrupt the balance of the molecular cloud, some of that dust and gas starts clumping together. As more and more of this dust and gas clump together gravity takes over and starts forming stars. One way that the balance of a molecular cloud can be interfered with is by a supernova remnant, the remains of an exploded star. Plasma jets, radiation, and other clouds can also interact with these clouds.

Continue reading “Star Formation Simulated in the lab, Using Lasers, of Course”

A Fleet of Space Telescopes Flying in Formation Could Reveal Details on Exoplanets

An exoplanet seen from its moon (artist's impression). Via the IAU.
An exoplanet seen from its moon (artist's impression). Via the IAU.

We’ve found thousands of exoplanets in the last couple of decades. We’ve discovered exoplanets unlike anything in our own Solar System. But even with all we’ve found, it seems like there’s more and more to discover. Space scientists of all types are always working on the next generation of missions, which is certainly true for exoplanets.

Chinese researchers are developing an idea for an exoplanet-detecting array of space telescopes that acts as an interferometer. But it won’t only detect them. The array will use direct imaging to characterize distant exoplanets in more detail.

Continue reading “A Fleet of Space Telescopes Flying in Formation Could Reveal Details on Exoplanets”

Apollo 11 Moon Dust Sells at Auction for a Cool Half Million

Apollo 11
Apollo 11 at Tranquility Base on the Moon. Credit: NASA

A lunar moon dust sample with a strange history made its way to the auction block yesterday.

On July 20, 1969, NASA astronaut Neil Armstrong stepped off the landing pad of the Eagle lunar lander and into history. About eight minutes afterwards, Armstrong performed a crucial task, and collected a small ‘contingency sample’ of the Sea of Tranquility landing site. The sample was a small assurance that, in the event of a hasty departure—due to say, a malfunction or landing site instability—they did indeed still manage to retrieve the very first lunar material for return to Earth.

Continue reading “Apollo 11 Moon Dust Sells at Auction for a Cool Half Million”

Brrr. Webb’s MIRI has Reached 6.4 Kelvin, Just a few Degrees Above Absolute Zero

Artist impression of the James Webb Space Telescope. Its design and construction were made more complicated and expensive because it had to fit into the nosecone of the rocket that launched it. Assembling telescopes in space could be an improvement. Image Credit: ESA.

The latest update on the James Webb Space Telescope literally sent a shiver down my spine! The telescope’s Mid-Infrared Instrument (MIRI) has now reached its operating temperature of a chilly 7 kelvins (7 deg above absolute 0, or -266 degrees C,-447 degrees F).

MIRI has now been turned on and is undergoing initial checkouts.

Continue reading “Brrr. Webb’s MIRI has Reached 6.4 Kelvin, Just a few Degrees Above Absolute Zero”

Hubble Confirms Comet C/2014 UN271 is an Absolute Unit, Astronomically Speaking

This diagram compares the size of the icy, solid nucleus of comet C/2014 UN271 (Bernardinelli-Bernstein) to several other comets. The majority of comet nuclei observed are smaller than Halley’s comet. They are typically a mile across or less. Comet C/2014 UN271 is currently the record-holder for big comets. And, it may be just the tip of the iceberg. There could be many more monsters out there for astronomers to identify as sky surveys improve in sensitivity. Though astronomers know this comet must be big to be detected so far out to a distance of over 2 billion miles from Earth, only the Hubble Space Telescope has the sharpness and sensitivity to make a definitive estimate of nucleus size. Credits: Illustration: NASA, ESA, Zena Levy (STScI)

It’s official. Comet C/2014 UN271 (Bernardinelli-Bernstein) has the largest nucleus ever seen in a comet. The gargantuan comet was discovered in the fall of 2021, and in January 2022, astronomers turned the Hubble Space Telescope to ascertain more details and determine the exact size.

NASA said a team of scientists has now estimated the diameter is approximately 129 km (80 miles) across, making it larger than the state of Rhode Island. The nucleus is about 50 times larger than other known comets. Its mass is estimated to be a staggering 500 trillion tons, a hundred thousand times greater than the mass of a typical comet found much closer to the Sun.

Continue reading “Hubble Confirms Comet C/2014 UN271 is an Absolute Unit, Astronomically Speaking”

Curiosity is Going to Find a new Route Around This Tricky Patch Called “Gator-Back Terrain”

Credit: NASA/JPL-Caltech/MSSS

Right now, the Curiosity rover continues to climb Mount Sharp (Aeolis Mons), the central peak within the Gale Crater on Mars. This massive pile of rock and sediment was created over the course of 2 billion years by liquid water that flowed into the crater, creating a layered structure that stands around 5.5 km (18,000 ft) tall. Many of these layers were deposited when the crater is thought to have been a lakebed, which makes it a prime location to search for evidence of past life (and maybe present) on Mars.

Climbing this feature is hard work and can cause severe wear on Curiosity’s metal wheels. The rover began climbing the southern edge of “Greenheugh Pediment,” a gentle slope topped by sandstone rubble that scientists want to learn more about. A few weeks ago, the rover suddenly encountered a huge patch of wind-sharpened rocks known as ventifacts (aka. “gator back” terrain). This forced the mission team to plot an alternate route so that Curiosity can continue to get more life out of its wheels.

Continue reading “Curiosity is Going to Find a new Route Around This Tricky Patch Called “Gator-Back Terrain””

Even Mercury has Geomagnetic Storms

Can other planets have geomagnetic storms, even if their magnetosphere is weak and they don’t have an ionosphere like Earth? This question has now been answered, according to research done by a team of scientists in the United States, Canada, and China.

The research team found evidence that Mercury has a ring current, part of a magnetosphere, consisting of charged particles flowing laterally in a doughnut shape around the planet but that excludes the poles. This evidence came from data obtained from the Messenger space probe while it was dropping towards the planet at the end of its mission on April 14, 2015.

Continue reading “Even Mercury has Geomagnetic Storms”

Five Rover Teams Chosen to Help Explore the Moon’s South Pole

Moon base
Illustration of NASA astronauts on the lunar South Pole. Mission ideas we see today have at least some heritage from the early days of the Space Age. Credit: NASA

The Moon may seem barren, and it is. However, a certain species of inquisitive primates is still very interested in exploring the Moon, uncovering its secrets and maybe establishing a longer-term presence there. But thirsty primates need water, and there’s only one primary source on the Moon: the frozen water in shadowed craters at the lunar poles.

Continue reading “Five Rover Teams Chosen to Help Explore the Moon’s South Pole”