Marsquakes Can Help Us Find Water on the Red Planet

The Mars InSight lander's seismic detector was used to observe seismic waves from Marsquakes and impacts. Courtesy NASA
The Mars InSight lander's seismic detector was used to observe seismic waves from Marsquakes and impacts. New research shows that the lander's seismic and magnetic data could be used to detect subsurface water on Mars. Image Credit: NASA

Earth is a seismically active planet, and scientists have figured out how to use seismic waves from Earthquakes to probe its interior. We even use artificially created seismic waves to identify underground petroleum-bearing formations. When the InSIGHT (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) lander was sent to Mars, it sensed Marsquakes to learn more bout the planet’s interior.

Researchers think they can use Marsquakes to answer one of Mars’ most pressing questions: Does the planet hold water trapped in its subsurface?

Continue reading “Marsquakes Can Help Us Find Water on the Red Planet”

If We Want To Find Life-Supporting Worlds, We Should Focus on Small Planets With Large Moons

A rocky planet with a large moon may have good potential to host life, given that the Moon controls essential aspects for life on Earth, including the length of the day, ocean tides, and stable climate. Image Credit: University of Rochester photo illustration by Michael Osadciw featuring Unsplash photography from Brad Fickeisen, Jaanus Jagomagi, and Engin Akyurt

There’s no perfect way of doing anything, including searching for exoplanets. Every planet-hunting method has some type of bias. We’ve found most exoplanets using the transit method, which is biased toward larger planets. Larger planets closer to their stars block more light, meaning we detect large planets transiting in front of their stars more readily than we detect small ones.

That’s a problem because some research says that life-supporting planets are more likely to be small, like Earth. It’s all because of moons and streaming instability.

Continue reading “If We Want To Find Life-Supporting Worlds, We Should Focus on Small Planets With Large Moons”

The Earliest Merging Quasars Ever Seen

This illustration depicts two quasars in the process of merging. There are many unanswered questions around galaxy mergers and the quasars that can result. Image Credit: NOIRLab/NSF/AURA/M. Garlick)

Studying the history of science shows how often serendipity plays a role in some of the most important discoveries. Sometimes, the stories are apocryphal, like Newton getting hit on the head with an apple. But sometimes, there’s an element of truth to them. That was the case for a new discovery of the oldest pair of merging quasars ever discovered – and it all started with a pair of red blots on a picture.

Continue reading “The Earliest Merging Quasars Ever Seen”

Hubble's Back, but Only Using One Gyro

This image of NASA's Hubble Space Telescope was taken on May 19, 2009 after deployment during Servicing Mission 4. NASA

The Hubble Space Telescope has experienced ongoing problems with one of its three remaining gyroscopes, so NASA has decided to shift the telescope into single gyro mode. While the venerable space telescope has now returned to daily science operations, single gyro mode means Hubble will only use one gyro to maintain a lock on its target. This will slow its slew time and decrease some of its scientific output. But this plan increases the overall lifetime of the 34-year-old telescope, keeping one gyro in reserve. NASA is also troubleshooting the malfunctioning gyro, hoping to return it online.

Continue reading “Hubble's Back, but Only Using One Gyro”

Earth’s Atmosphere is Our Best Defence Against Nearby Supernovae

Artist's impression of a Type II supernova explosion. These supernova produce gamma rays and powerful ionizing radiation that's hazardous to life. Credit: ESO

Earth’s protective atmosphere has sheltered life for billions of years, creating a haven where evolution produced complex lifeforms like us. The ozone layer plays a critical role in shielding the biosphere from deadly UV radiation. It blocks 99% of the Sun’s powerful UV output. Earth’s magnetosphere also shelters us.

But the Sun is relatively tame. How effective are the ozone and the magnetosphere at protecting us from powerful supernova explosions?

Continue reading “Earth’s Atmosphere is Our Best Defence Against Nearby Supernovae”

There’s Chang’e-6 on the Far Side of the Moon

The newest phase of China’s lunar exploration project is soon coming to an end. On June 20th, the Chang’e 6 sample return mission starts its journey back to Earth from the far side of the Moon, having already collected samples and blasted itself back into lunar orbit. But since a picture is worth a thousand words, let’s look at some of the more memorable images that have come out of this mission so far.

Continue reading “There’s Chang’e-6 on the Far Side of the Moon”

A New Way to Survive the Harsh Lunar Night

Heat-Switch Device Boosts Lunar Rover Longevity in Harsh Moon Climate.
Heat-Switch Device Boosts Lunar Rover Longevity in Harsh Moon Climate. Credit: Shinichiro Kinoshita, Masahito Nishikawara

The Moon is a tough place to survive, and not just for humans. The wild temperature extremes between day and night make it extremely difficult to build reliable machinery that will continue to operate. But an engineering team from Nagoya University in Japan have developed an energy-efficient new way to control Loop Heat Pipes (LHP) to safely cool lunar rovers. This will extend their lifespan, keeping them running for extended lunar exploration missions.

Continue reading “A New Way to Survive the Harsh Lunar Night”

The Great Red Spot Probably Formed in the Early 1800s

"Great Red Spot from P7 Flyover". Credit: NASA / SwRI / MSSS / Jason Major © public domain

Jupiter’s Great Red Spot (GRS) is one of the Solar System’s defining features. It’s a massive storm that astronomers have observed since the 1600s. However, its date of formation and longevity are up for debate. Have we been seeing the same phenomenon all this time?

Continue reading “The Great Red Spot Probably Formed in the Early 1800s”

A New Way to Prove if Primordial Black Holes Contribute to Dark Matter

Depiction of a primordial black hole forming amid a sea of hot, color-charged quarks and gluons, a tiny fraction of a second after the Big Bang. Credits:Credit: Image by Ka?a Bradonji?
Depiction of a primordial black hole forming amid a sea of hot, color-charged quarks and gluons, a tiny fraction of a second after the Big Bang. Credits:Credit: Image by Ka?a Bradonji?

The early Universe was a strange place. Early in its history—in the first quintillionth of a second—the entire cosmos was nothing more than a stunningly hot plasma. And, according to researchers at the Massachusetts Institute of Technology (MIT), this soup of quarks and gluons was accompanied by the formation of weird little primordial black holes (PHBs). It’s entirely possible that these long-vanished PHBs could have been the root of dark matter.

Continue reading “A New Way to Prove if Primordial Black Holes Contribute to Dark Matter”

Baby Stars are Swarming Around the Galactic Center

converted PNM file

The vicinity of Sagittarius A* (Sgr A*), the supermassive black hole at the Milky Way’s center, is hyperactive. Stars, gas, and dust zip around the black hole’s gravitational well at thousands of kilometers per hour. Previously, astronomers thought that only mature stars had been pulled into such rapid orbits. However, a new paper from the University of Cologne and elsewhere in Europe found that some relatively young stars are making the rounds rather than older ones, which raises some questions about the models predicting how stars form in these hyperactive regions.

Continue reading “Baby Stars are Swarming Around the Galactic Center”