Astronomy Jargon 101: Absolute Magnitude

Taken with the HAWK-I instrument on ESO’s Very Large Telescope in the Chilean Atacama Desert, this stunning image shows the Milky Way’s central region with an angular resolution of 0.2 arcseconds. This means the level of detail picked up by HAWK-I is roughly equivalent to seeing a football (soccer ball) in Zurich from Munich, where ESO’s headquarters are located. The image combines observations in three different wavelength bands. The team used the broadband filters J (centred at 1250 nanometres, in blue), H (centred at 1635 nanometres, in green), and Ks (centred at 2150 nanometres, in red), to cover the near infrared region of the electromagnetic spectrum. By observing in this range of wavelengths, HAWK-I can peer through the dust, allowing it to see certain stars in the central region of our galaxy that would otherwise be hidden.   

In this series we are exploring the weird and wonderful world of astronomy jargon! You’ll surely measure the awesomeness of today’s topic: absolute magnitude!

Continue reading “Astronomy Jargon 101: Absolute Magnitude”

Twin Stars Prove Einstein at Least 99.99% Right

Artistic impression of the Double Pulsar system, where two active pulsars orbit each other in just 147 min. The orbital motion of these extremely dense neutrons star causes a number of relativistic effects, including the creation of ripples in spacetime known as gravitational waves. The gravitational waves carry away energy from the systems which shrinks by about 7mm per days as a result. The corresponding measurement agrees with the prediction of general relativity within 0.013%. The picture at high resolution and two alternative versions (1b, 1c) are accessible in the left column. [less] © Michael Kramer/MPIfR

More than a hundred years have passed since Einstein formalized his theory of General Relativity (GR), the geometric theory of gravitation that revolutionized our understanding of the Universe. And yet, astronomers are still subjecting it to rigorous tests, hoping to find deviations from this established theory. The reason is simple: any indication of physics beyond GR would open new windows onto the Universe and help resolve some of the deepest mysteries about the cosmos.

One of the most rigorous tests ever was recently conducted by an international team of astronomers led by Michael Kramer of the Max Planck Institute for Radio Astronomy (MPIfR) in Bonn, Germany. Using seven radio telescopes from across the world, Kramer and his colleagues observed a unique pair of pulsars for 16 years. In the process, they observed effects predicted by GR for the first time, and with an accuracy of at least 99.99%!

Continue reading “Twin Stars Prove Einstein at Least 99.99% Right”

Forget That Planet That Orbits Every 16 Hours. That’s so Last Week. Now Astronomers Have Found a Metal Planet That Orbits its Star EVERY 8 HOURS

Artist view of a hot planet orbiting a red dwarf star. Credit: Patricia Klein

Most exoplanets are found using a technique known as the transit method, where the exoplanet passes in front of its star, causing the star to dim slightly. It takes several transits to confirm an exoplanet, so it’s not surprising that most known exoplanets have a fairly short orbital period. Months or days rather than years. There’s also an observational bias in that most known stars are red dwarfs, so it’s usually not surprising that we’ve found yet another exoplanet closely orbiting a red dwarf star. But sometimes what we find is so extreme, it really is surprising.

Continue reading “Forget That Planet That Orbits Every 16 Hours. That’s so Last Week. Now Astronomers Have Found a Metal Planet That Orbits its Star EVERY 8 HOURS”

Life on Earth Needed Iron. Will it be the Same on Other Worlds?

Earth as seen by the JUNO spacecraft in 2013. Credit: NASA/JPL-Caltech/SwRI/MSSS/Kevin M. Gill.

A lot has to go right for a planet to support life. Some of the circumstances that allow life to bloom on any given planet stem from the planet’s initial formation. Here on Earth, circumstances meant Earth’s crust contains about 5% iron by weight.

A new paper looks at how Earth’s iron diminished over time and how that shaped the development of complex life here on Earth. Is iron necessary for complex life to develop on other worlds?

Continue reading “Life on Earth Needed Iron. Will it be the Same on Other Worlds?”

Gravitational Waves Could Explain why There’s More Matter Than Antimatter in the Universe

One of the questions underpinning both philosophy and science is “why are we here”?  Ask an astrophysicist, and they might answer with an imbalance between matter and antimatter at the beginning of the universe.  While that is a (relatively) simple explanation, it then begs the question – why was there an imbalance in the first place?  Scientists have been seeking ways to test various theories regarding that imbalance but have come up empty-handed so far. Now, a team of theoretical physicists think they might have found a way to test some of those theories using gravitational waves.

Continue reading “Gravitational Waves Could Explain why There’s More Matter Than Antimatter in the Universe”

A Spacecraft Orbiting the Moon Just Captured an Image of Saturn

Cameras can be finicky – especially ones primarily used for astronomy.  When used for a purpose other than their intended one, sometimes they result in horribly muddled or blurry images.  However, sometimes an image works out just right and provides a whole new perspective on a familiar scene.  That’s what happened recently when the Lunar Reconnaissance Orbiter (LRO) turned one of its cameras toward one of astronomy’s favorite places – Saturn.

Continue reading “A Spacecraft Orbiting the Moon Just Captured an Image of Saturn”

NASA Gives Axiom Space Another Opening to Fly Private Astronauts to Space Station

John Shoffner and Peggy Whitson in SpaceX Crew Dragon simulator
John Shoffner and Peggy Whitson go through simulator training at SpaceX. (John Shoffner via Twitter)

Even though Texas-based Axiom Space hasn’t yet sent its first crew of customers to the International Space Station, NASA is giving the company an opportunity to send a second crew, potentially just months later.

NASA says it will begin negotiations with Axiom on a space station mission scheduled sometime between the autumn of 2022 and the late spring of 2023. Under a pricing policy laid out earlier this year, NASA would charge $10 million to support each private astronaut during their stay in orbit, plus extra charges for food and supplies.

It’ll cost tens of millions more for the ride to the space station and back. The three customers who have signed up for Axiom’s first space station mission in February are reportedly paying $55 million each, which includes the fare for a trip in SpaceX’s Crew Dragon capsule.

Continue reading “NASA Gives Axiom Space Another Opening to Fly Private Astronauts to Space Station”

One Feature Mars has That we Don’t: Polar Megadunes

For fans of astrophotography, Kevin M. Gill needs no introduction. Even if you’re not up on the latest astronomical news and developments, chances are you’ve still seen some of his images over the years. From beautiful artist renditions to breathtaking photographs of far-off planets, Gill has covered it all. Among the latest images available on his official Flickr page are pictures of a unique feature on Mars: the Chasma Boreale Megadunes!

Continue reading “One Feature Mars has That we Don’t: Polar Megadunes”

Even Really Massive Stars Seem to Have Planets

This artist’s impression shows a close up of the planet b Centauri b, which orbits a binary system with mass at least six times that of the Sun. This is the most massive and hottest planet-hosting star system found to date. The planet is ten times as massive as Jupiter and orbits the two-star system at 100 times the distance Jupiter orbits the Sun. Image: ESO/L. Calçada

Can planets form around massive, hot stars? Some astronomers think they can’t. According to the evidence, planets around stars exceeding three solar masses should be rare, or maybe even non-existent. But now astronomers have found one.

A team of researchers found a binary star that’s six times the mass of the Sun. And it hosts a planet that’s about ten times more massive than Jupiter.

Continue reading “Even Really Massive Stars Seem to Have Planets”

This Incredible Photo of the Sun is Made up of 150,000 Individual Photographs

A 300 megapixel photo of our Sun, taken by using a specially modified telescope, compiling over 150,000 individual images. Credit and copyright: Andrew McCarthy.

You’re looking at a 300-megapixel photo of our Sun. Astrophotographer Andrew McCarthy used a specially modified telescope, taking over 150,000 individual photos and combing them into this magnificent image.

“It took about 10 hours to stack all the data, and another 3-4 hours to get it from a raw stack to the final image,” McCarthy said via email.

Continue reading “This Incredible Photo of the Sun is Made up of 150,000 Individual Photographs”