Astronomers Discover a Mysterious Star That Flashes Every 20 Minutes. But What is it?

A radio map of the Milky Way showing the location of the new transient. Credit: Dr Natasha Hurley-Walker (ICRAR/Curtin) and the GLEAM Team

Just 4,000 light-years from Earth is a strange, star-sized object. It’s been observed by radio telescopes, but astronomers aren’t sure what it is. They call it a long period transient.

Continue reading “Astronomers Discover a Mysterious Star That Flashes Every 20 Minutes. But What is it?”

Rings Inside a Martian Crater Reveal its Ancient History

An unusual crater on Mars, as seen by the CaSSIS camera onboard the ESA/Roscosmos ExoMars Trace Gas Orbiter (TGO) on 13 June 2021 in the vast northern plains of Acidalia Planitia. Credit: ,ESA/Roscosmos/CaSSIS,

Is this a closeup look at a tree stump, or an orbital view of an impact crater? At first glance, it might be hard to tell. But this image of a crater on Mars provides planetary scientists almost the same kind of climate history data about the Red Planet as tree rings provide to climate scientists here on Earth.

This picture was taken by the Colour and Stereo Surface Imaging (CaSSIS) camera onboard the ESA/Roscosmos ExoMars Trace Gas Orbiter (TGO), which arrived at Mars in 2016 and began its full science mission in 2018.

Continue reading “Rings Inside a Martian Crater Reveal its Ancient History”

Is the Underground Lake on Mars Just Volcanic Rock?

Ice at Mars' south pole. Image Credit: ESA/DLR/FU Berlin/Bill Dunford

Is Mars home to an underwater lake? Different researchers are reaching different conclusions. Some say remote sensing from the Mars Express orbiter shows liquid water in an underground lake at Mars’ south polar region. Other researchers say clays or minerals explain the data better.

Who’s right? Maybe none of them.

A new study says that volcanic rock can explain the Mars Express data and that it’s a more plausible explanation.

Continue reading “Is the Underground Lake on Mars Just Volcanic Rock?”

What is Einstein’s Theory of Relativity?

Einstein Lecturing
Albert Einstein during a lecture in Vienna in 1921. Credit: National Library of Austria/F Schmutzer/Public Domain

In the history of science and physics, several scholars, theories, and equations have become household names. In terms of scientists, notable examples include Pythagoras, Aristotle, Galileo, Newton, Planck, and Hawking. In terms of theories, there’s Archimede’s “Eureka,” Newton’s Apple (Universal Gravitation), and Schrodinger’s Cat (quantum mechanics). But the most famous and renowned is arguably Albert Einstein, Relativity, and the famous equation, E=mc2. In fact, Relativity may be the best-known scientific concept that few people truly understand.

For example, Einstein’s Theory of Relativity comes in two parts: the Special Theory of Relativity (SR and the General Theory of Relativity (GR). And the term “Relativity” itself goes back to Galileo Galilee and his explanation for why motion and velocity are relative to the observer. As you can probably tell, explaining how Einstein’s groundbreaking theory works require a deep dive into the history of physics, some advanced concepts, and how it all came together for one of the greatest minds of all time!

Continue reading “What is Einstein’s Theory of Relativity?”

The Scientific Debate Rages on: Is there Water Under Mars’ South Pole?

The South Pole on Mars. Image: NASA.
The South Pole on Mars. Image: NASA.

There’s no surface water on Mars now, but there was a long time ago. If you ask most people interested in Mars, what’s left of it is underground and probably frozen.

But some previous evidence shows there’s a lake of liquid water under the planet’s South Pole Layered Deposits (SPLD). Other evidence refutes it. So what’s going on?

Science, that’s what.

Continue reading “The Scientific Debate Rages on: Is there Water Under Mars’ South Pole?”

We Already Have the Technology to Save Earth From a “Don’t Look Up” Comet or Asteroid

DON'T LOOK UP (L to R) LEONARDO DICAPRIO as DR. RANDALL MINDY, JENNIFER LAWRENCE as KATE DIBIASKY. Cr. NIKO TAVERNISE/NETFLIX © 2021

What if a 10 km (6.5 mile)-wide asteroid was on a bee-line towards Earth, with an impending, calamitous impact just six months away? This was the scenario in the recent Netflix film, “Don’t Look Up.” The movie has led many to wonder if we have the resources and technology ready and available today to avert such a disaster.

A new paper looking at the technical aspects of such an endeavor says yes. Yes, we do.

Continue reading “We Already Have the Technology to Save Earth From a “Don’t Look Up” Comet or Asteroid”

NASA is Already Designing Hardware for a Mars Sample Return Mission

Testing is key to the success of any space mission, and the more complex the mission, the more testing is required to complete it successfully.  The Mars Sample Return (MSR) mission is one of the most ambitious missions ever undertaken.  It started with the Perseverance rover, which is currently exploring Jezero crater while occasionally stopping to fill sample bottles with interesting material.  But the more impressive engineering feat is what happens next. NASA plans to launch a combination lander, rover, and ascent rocket that will land on the Martian surface, pick up the sample containers Perseverance has left behind, sterilize them, launch them back into space, and then return them to Earth.  

Continue reading “NASA is Already Designing Hardware for a Mars Sample Return Mission”

Unistellar’s Plans for Science and Astronomy in 2022

unistellar
An eQuinox scope, ready for a night's worth of observing. Credit: Dave Dickinson.

Unistellar’s eVscope has proven its ability to do serious astronomy, with more to come in 2022.

There’s a revolution underway in how amateur astronomers contribute to modern astronomy. Smartscopes—telescopes controlled remotely via tablets or smartphones—are making there way into the modern amateur telescope market and out into the field. These have the ability to not only bring deep-sky astronomy to light-polluted urbanites, but to lower the bar for entry into deep-sky astrophotography. One of the leading manufacturers of smartscopes is Unistellar. First offered as a Kickstarter project in 2017, Unistellar’s line now includes the eVscope eQuinox, and the new eVscope2.

Continue reading “Unistellar’s Plans for Science and Astronomy in 2022”

Finally, an Explanation for the Cold Spot in the Cosmic Microwave Background

Map of the cosmic microwave background (CMB) sky produced by the Planck satellite. The Cold Spot is shown in the inset, with coordinates and the temperature difference in the scale at the bottom. Credit: ESA/Durham University.

According to our current Cosmological models, the Universe began with a Big Bang roughly 13.8 billion years ago. During the earliest periods, the Universe was permeated by an opaque cloud of hot plasma, preventing atoms from forming. About 380,000 years later, the Universe began to cool and much of the energy generated by the Big Bang converted into light. This afterglow is now visible to astronomers as the Cosmic Microwave Background (CMB), first observed during the 1960s.

One peculiar characteristic about the CMB that attracted a lot of attention was the tiny fluctuations in temperature, which could provide information about the early Universe. In particular, there is a rather large spot in the CMB that is cooler than the surrounding afterglow, known as the CMB Cold Spot. After decades of studying the CMB’s temperature fluctuations, a team of scientists recently confirmed the existence of the largest cold spots in the CMB afterglow – the Eridanus Supervoid – might be the explanation for the CMB Cold Spot that astronomers have been looking for!

Continue reading “Finally, an Explanation for the Cold Spot in the Cosmic Microwave Background”

5,000 Exoplanets!

An artist's illustration of NASA's TESS with Earth and the Moon. Image Credit: NASA

Before NASA’s TESS (Transiting Exoplanet Survey Satellite) mission launched in 2018, astronomers tried to understand what it would find in advance. One study calculated that TESS would find between 4430 and 4660 new exoplanets during its primary two-year-long mission.

The primary mission (PM) is over, and TESS is in its extended mission (EM) now. The extended mission is 1.5 years old, and TESS has discovered 176 confirmed exoplanets and 5164 candidates. Scientists are still going through data from the primary mission, so the data might be hiding many more exoplanets. And TESS isn’t finished yet.

Continue reading “5,000 Exoplanets!”