Did Cosmic Dust Deliver the Phosphorus Needed for Life?

Sunlight reflects off tiny, interplanetary dust particles, creating the faint column of glowing light seen against the stars in this image. New research suggests that cosmic dust might be an important source of phosphorus for life on Earth. Credit: Malcol, CC BY 3.0

Without phosphorus, there’s no life. It’s a necessary part of DNA, RNA, and other biological molecules like ATP, which helps cells transport energy. But any phosphorus that was present when Earth formed would’ve been sequestered in the center of the molten planet.

So where did phosphorus come from?

It might have come from cosmic dust.

Continue reading “Did Cosmic Dust Deliver the Phosphorus Needed for Life?”

Comet A1 Leonard Brightens in December

Comet A1 Leonard
Comet A1 Leonard near the galaxy NGC 4395 in mid-November. Credit and copyright: Michael Jäger

Now is the time to start tracking Comet C/2021 A1 Leonard, as it starts its dawn dive sunward.

The days following New Year’s 2021 saw a comet discovery with potential. On the night of January 3rd, exactly one year to the day prior to perihelion, astronomer Gregory J. Leonard working at the Mount Lemmon Observatory near Tucson Arizona discovered the first long-period comet of the year, C/2021 A1 Leonard. Shining at magnitude +19 and 5 Astronomical Units (AU) distant (about the distance of Jupiter from the Sun) at the time of discovery, early indications hinted that comet A1 Leonard might prove to be something special, come the end of 2021.

Continue reading “Comet A1 Leonard Brightens in December”

Here are Hubble’s 2021 Photos of the Outer Solar System

The NASA/ESA Hubble Space Telescope has completed its annual grand tour of the outer Solar System for 2021. This is the realm of the giant planets — Jupiter, Saturn, Uranus, and Neptune — extending as far as 30 times the distance between Earth and the Sun. Unlike the rocky terrestrial planets like Earth and Mars that huddle close to the Sun’s warmth, these far-flung worlds are mostly composed of chilly gaseous soups of hydrogen, helium, ammonia, and methane around a packed, intensely hot, compact core. Note: The planets are not shown to scale in this image. Credit: NASA, ESA, A. Simon (Goddard Space Flight Center), and M.H. Wong (University of California, Berkeley) and the OPAL team

If we had to rely solely on spacecraft to learn about the outer planets, we wouldn’t be making great progress. It takes a massive effort to get a spacecraft to the outer Solar System. But thanks to the Hubble Space Telescope, we can keep tabs on the gas giants without leaving Earth’s orbit.

Continue reading “Here are Hubble’s 2021 Photos of the Outer Solar System”

Once New Horizons was out Beyond Pluto, it Could Finally Measure the Brightness of the Milky Way

This false-color map shows several scans of the Lyman-alpha background over the sky, obtained by the Alice ultraviolet spectrograph on the New Horizons spacecraft when it was 45 AU from the Sun. The data agrees well with an underlying model of the solar component of the Lyman-alpha background to which a constant brightness from the Milky Way has been added. The background is brighter at both directions near our Sun, which is marked here by an orange dot. Credit: SwRI

The New Horizons spacecraft has been speeding away from Earth since it launched in 2006. Scientists using the Alice UV imaging spectrograph on board New Horizons, have been patiently but sporadically gathering data during those 15 years, but also waiting to get far enough away from the Sun to make a specific measurement: the brightness of the Lyman-alpha background of the Milky Way. Until now, this had never been measured accurately.

Continue reading “Once New Horizons was out Beyond Pluto, it Could Finally Measure the Brightness of the Milky Way”

South Korea Launches its First Rocket. The Third Stage cut off Short.

So far, only six countries have successfully launched more than 1 ton of equipment into space using domestically developed rockets.  A seventh, North Korea, has successfully done so with a slightly smaller payload.  Recently, their southern neighbor attempted to get into this exclusive club by testing its first-ever three-stage orbital rocket.  

Continue reading “South Korea Launches its First Rocket. The Third Stage cut off Short.”

If Alien Probes are Already in the Solar System, Maybe we Could Detect Them Calling Home

Artist's impression of the Milky Way Galaxy. Credit: ESO

It’s been seventy years since physicist Enrico Fermi asked his famous question: “Where is everybody?” And yet, the tyranny of the Fermi Paradox is still with us and will continue to be until definitive evidence of Extraterrestrial Intelligence (ETI) is found. In the meantime, scientists are forced to speculate as to why we haven’t found any yet and (more importantly) what we should be looking for. By focusing our search efforts, it is hoped that we may finally determine that we are not alone in the Universe.

In a recent study, two researchers from the University of Liège and the Massachusetts Institute of Technology (MIT) recommended that we look for evidence of transmissions from our Solar System. Based on the theory that ETIs exist and have already established a communications network in our galaxy, the team identified Wolf 359 as the best place to look for possible interstellar communications from an alien probe.

Continue reading “If Alien Probes are Already in the Solar System, Maybe we Could Detect Them Calling Home”

Is That a Fossil on Mars? Non-Biological Deposits can Mimic Organic Structures

NASA's Perseverance rover, which is searching signs of ancient life on Mars. Some of the rocks in this image are volcanic in origin. (credit: NASA/JPL-Caltech/MSSS)
NASA's Perseverance rover, which is searching signs of ancient life on Mars. Some of the rocks in this image are volcanic in origin. (credit: NASA/JPL-Caltech/MSSS)

There’s nothing easy about searching for evidence of life on Mars. Not only do we somehow have to land a rover there, which is extraordinarily difficult. But the rover needs the right instruments, and it has to search in the right location. Right now, the Perseverance lander has checked those boxes as it pursues its mission in Jezero Crater.

But there’s another problem: there are structures that look like fossils but aren’t. Many natural chemical processes produce structures that mimic biological ones. How can we tell them apart? How can we prepare for these false positives?

Continue reading “Is That a Fossil on Mars? Non-Biological Deposits can Mimic Organic Structures”

You can Watch Ingenuity’s Flight on Mars, Captured by Perseverance

Artist's impression of the Mars Ingenuity helicopter flying from the Perseverance rover. Credit: NASA/JPL-Caltech

New video beamed back to Earth from the Perseverance Rover shows an incredibly detailed view of the Ingenuity helicopter’s flight back in September. The video – taken from about 300 meters (328 yards) away — shows Ingenuity’s takeoff and landing with such detail, that even a little plume of dust is visible during the helicopter’s ascent.

Continue reading “You can Watch Ingenuity’s Flight on Mars, Captured by Perseverance”

We’re Constantly Battling Invasive Species Here on Earth. What Does That Teach us About Infecting Other Worlds With Earth Life?

When Neil Armstrong, Buzz Aldrin, and Michael Collins returned from the Moon in the summer of 1969, they spent three weeks isolated in quarantine to make sure that they hadn’t brought back any microbial lifeforms from the Moon, which could prove harmful to Earth life. Later, once the Moon had been unequivocally proved to be a dead world, future Apollo missions were allowed to skip quarantine. Elsewhere in the solar system, however, NASA still has to take planetary biosecurity seriously, because life could be out there. If we bring it back to Earth, it could be a danger to us and our ecosystems. Conversely, microbial Earth life could invade a fragile alien ecosystem, destroying a newly discovered lifeform before we have the chance to study it. Imagine discovering life on Mars, only to realize that it was life we had brought there with us.

Continue reading “We’re Constantly Battling Invasive Species Here on Earth. What Does That Teach us About Infecting Other Worlds With Earth Life?”

There’s Enough Oxygen in the Lunar Regolith to Support Billions of People on the Moon

When it comes to the future of space exploration, a handful of practices are essential for mission planners. Foremost among them is the concept of In-Situ Resource Utilization (ISRU), providing food, water, construction materials, and other vital elements using local resources. And when it comes to missions destined for the Moon and Mars in the coming years, the ability to harvest ice, regolith, and other elements are crucial to mission success.

In preparation for the Artemis missions, NASA planners are focused on finding the optimal way to produce oxygen gas (O2) from all of the elemental oxygen locked up in the Moon’s surface dust (aka. lunar regolith). In fact, current estimates indicate that there is enough elemental oxygen contained in the top ten meters (33 feet) of lunar regolith to create enough O2 for every person on Earth for the next 100,000 years – more than enough for a lunar settlement!

Continue reading “There’s Enough Oxygen in the Lunar Regolith to Support Billions of People on the Moon”