Project Hyperion is Seeking Ideas for Building Humanity’s First Generation Ship

Project Hyperion is the first design competition for a generation ship. Credit: Maciej Rebisz/Michel Lamontagne

The dream of traversing the depths of space and planting the seed of human civilization on another planet has existed for generations. For long as we’ve known that most stars in the Universe are likely to have their own system of planets, there have been those who advocated that we explore them (and even settle on them). With the dawn of the Space Age, this idea was no longer just the stuff of science fiction and became a matter of scientific study. Unfortunately, the challenges of venturing beyond Earth and reaching another star system are myriad.

When it comes down to it, there are only two ways to send crewed missions to exoplanets. The first is to develop advanced propulsion systems that can achieve relativistic speeds (a fraction of the speed of light). The second involves building spacecraft that can sustain crews for generations – aka. a Generation Ship (or Worldship). On November 1st, 2024, Project Hyperion launched a design competition for crewed interstellar travel via generation ships that would rely on current and near-future technologies. The competition is open to the public and will award a total of $10,000 (USD) for innovative concepts.

Continue reading “Project Hyperion is Seeking Ideas for Building Humanity’s First Generation Ship”

How Did Supermassive Black Holes Get So Big, So Early? They Might Have Had a Head Start

An artist's illustration of a supermassive black hole (SMBH.) The JWST has revealed SMBHs in the early Universe that are much more massive than our scientific models can explain. Could primordial black holes have acted as "seeds" for these massive SMBHs? Image Credit: ESA

Supermassive Black Holes (SMBHs) can have billions of solar masses, and observational evidence suggests that all large galaxies have one at their centres. However, the JWST has revealed a foundational cosmic mystery. The powerful space telescope, with its ability to observe ancient galaxies in the first billion years after the Big Bang, has shown us that SMBHs were extremely massive even then. This contradicts our scientific models explaining how these behemoths became so huge.

How did they get so massive so early?

Continue reading “How Did Supermassive Black Holes Get So Big, So Early? They Might Have Had a Head Start”

A Mission to Triton and Neptune Would Unlock Their Mysteries

Global color mosaic of Neptune's largest moon, Triton, taken by NASA's Voyager 2 in 1989. (Credit: NASA/JPL-Caltech/USGS)

A town in the Austrian Alps might not seem like the most conducive place to come up with daring space missions. But, for the last 40 years, students and professors have been gathering to do just that in Alpbach, just north of the Lichtenstein/Austrian border. One outcome of the Alpbach Summer School this year was an idea for a combined Neptune / Triton explorer mission to take advantage of existing technology developed for the JUICE missions. Before we get into the technical details of the mission, though, let’s dive into why scientists should care about the Neptunian system in the first place.

Continue reading “A Mission to Triton and Neptune Would Unlock Their Mysteries”

Good News, the Ozone Layer Hole is Continuing to Shrink

The area of depleted ozone over the Antarctic ranked the seventh smallest since recovery began in 1992.

Climate change is a huge topic and often debated across the world. We continue to burn fossil fuels and ignore our charge toward human driven climate change but while our behaviour never seems to improve, something else does! For the last few decades we have been pumping chlorofluorocarbons into the atmosphere causing a hole in the ozone layer to form. Thanks largely to worldwide regulation changes and a reduction in the use of these chemicals, the hole it seems is finally starting to get smaller. 

Continue reading “Good News, the Ozone Layer Hole is Continuing to Shrink”

How Webb Stays in Focus

A focused NIRCam image compared to intentionally de-focused ones. Credit: NASA/JWST

One of the most difficult challenges when assembling a telescope is aligning it to optical precision. If you don’t do it correctly, all your images will be fuzzy. This is particularly challenging when you assemble your telescope in space, as the James Webb Space Telescope (JWST) demonstrates.

Continue reading “How Webb Stays in Focus”

A Trash Compactor is Going to the Space Station

A prototype trash compactor to be tested aboard the International Space Station, planned for 2026. Credit: Sierra Space.

Astronauts on the International Space Station generate their share of garbage, filling up cargo ships that then deorbit and burn up in the atmosphere. Now Sierra Space has won a contract to build a trash compactor for the space station. The device will compact space trash by 75% in volume and allow water and other gases to be extracted for reclamation. The resulting garbage blocks are easily stored and could even be used as radiation shielding on long missions.

Continue reading “A Trash Compactor is Going to the Space Station”

Using Light Echoes to Find Black Holes

Light near a black hole can travel different paths to create echoes of a single flash. Credit: Wong, et al

The most amazing thing about light is that it takes time to travel through space. Because of that one simple fact, when we look up at the Universe we see not a snapshot but a history. The photons we capture with our telescopes tell us about their journey. This is particularly true when gravity comes into play, since gravity bends and distorts the path of light. In a recent study, a team shows us how we might use this fact to better study black holes.

Continue reading “Using Light Echoes to Find Black Holes”

Launching Mass From the Moon Helped by Lunar Gravity Anomalies

Placing a mass driver on the Moon has long been a dream of space exploration enthusiasts. It would open up so many possibilities for the exploration of our solar system and the possibility of actually living in space. Gerard O’Neill, in his work on the gigantic cylinders that now bear his name, mentioned using a lunar mass driver as the source of the material to build them. So far, we have yet to see such an engineering wonder in the real world, but as more research is done on the topic, more and more feasible paths seem to be opening up to its potential implementation. 

Continue reading “Launching Mass From the Moon Helped by Lunar Gravity Anomalies”

A Star Disappeared in Andromeda, Replaced by a Black Hole

This Illustration shows a failed supernova turning directly into a black hole without an explosion. Credit: NASA/ESA/P. Jeffries (STScI)

Massive stars about eight times more massive than the Sun explode as supernovae at the end of their lives. The explosions, which leave behind a black hole or a neutron star, are so energetic they can outshine their host galaxies for months. However, astronomers appear to have spotted a massive star that skipped the explosion and turned directly into a black hole.

Continue reading “A Star Disappeared in Andromeda, Replaced by a Black Hole”

eROSITA All-Sky Survey Takes the Local Hot Bubble’s Temperature

3D model of the solar neighbourhood. The colour bar represents the temperature of the LHB. Credit ©: Michael Yeung/MPE

About half a century ago, astronomers theorized that the Solar System is situated in a low-density hot gas environment. This hot gas emits soft X-rays that displace the dust in the local interstellar medium (ISM), creating what is known as the Local Hot Bubble (LHB). This theory arose to explain the ubiquitous soft X-ray background (below 0.2 keV) and the lack of dust in our cosmic neighborhood. This theory has faced some challenges over the years, including the discovery that solar wind and neutral atoms interact with the heliosphere, leading to similar emissions of soft X-rays.

Thanks to new research by an international team of scientists led by the Max Planck Institute for Extraterrestrial Physics (MPE), we now have a 3D model of the hot gas in the Solar System’s neighborhood. Using data obtained by the eROSITA All-Sky Survey (eRASS1), they detected large-scale temperature differences in the LHBT that indicate that the LHB must exist, and both it and solar wind interaction contribute to the soft X-ray background. They also revealed an interstellar tunnel that could possibly link the LHB to a larger “superbubble.”

Continue reading “eROSITA All-Sky Survey Takes the Local Hot Bubble’s Temperature”