When we think of Jupiter-type planets, we usually picture massive cloud-covered worlds orbiting far from their stars. That distance keeps their volatile gases from vaporizing from stellar heat, similar to what we’re familiar with in our Solar System. So, why are so many exoplanets known as “hot Jupiters” orbiting very close to their stars? That’s the question astronomers ask as they study more of these extreme worlds.
Continue reading “Is This How You Get Hot Jupiters?”Now Uranus’ Moon Ariel Might Have an Ocean too
Venus is known for being really quite inhospitable with high surface temperatures and Mars is known for its rusty red horizons. Even the moons of some of the outer planets have fascinating environments with Europa and Enceladus boasting underground oceans. Recent observations from the James Webb Space Telescope show that Ariel, a moon of Uranus, is also a strong candidate for a sub surface ocean. How has this conclusion been reached? Well JWST has detected carbon dioxide ice on the surface on the trailing edge of features trailing away from the orbital direction. The possible cause, an underground ocean!
Continue reading “Now Uranus’ Moon Ariel Might Have an Ocean too”Why is JWST Having So Much Trouble with the TRAPPIST-1 System?
When the James Webb Space Telescope was launched it came with a fanfare expecting amazing things, much like the Hubble Space Telescope. One of JWST’s most anticipated target was TRAPPIST-1. This inconspicuous star is host to seven Earth-sized planets, with at least three in the habitable zone. The two inner planets are airless worlds but so far there has been no word of the third planet, the first in the habitable zone. The question is why and what makes it so tricky to observe?
Continue reading “Why is JWST Having So Much Trouble with the TRAPPIST-1 System?”Planetary Habitability Depends on its Star’s Magnetic Field
The extrasolar planet census recently passed a major milestone, with 5500 confirmed candidates in 4,243 solar systems. With so many exoplanets available for study, astronomers have learned a great deal about the types of planets that exist in our galaxy and have been rethinking several preconceived notions. These include the notion of “habitability” and whether Earth is the standard by which this should be measured – i.e., could there be “super habitable” exoplanets out there? – and the very concept of the circumsolar habitable zone (CHZ).
Traditionally, astronomers have defined habitable zones based on the type of star and the orbital distance where a planet would be warm enough to maintain liquid water on its surface. But in recent years, other factors have been considered, including the presence of planetary magnetic fields and whether they get enough ultraviolet light. In a recent study, a team from Rice University extended the definition of a CHZ to include a star’s magnetic field. Their findings could have significant implications in the search for life on other planets (aka. astrobiology).
Continue reading “Planetary Habitability Depends on its Star’s Magnetic Field”A Solution to the “Final Parsec Problem?”
Supermassive Black Holes are Nature’s confounding behemoths. It’s difficult for Earth-bound minds to comprehend their magnitude and power. Astrophysicists have spent decades studying them, and they’ve made progress. But one problem still baffles even them: the Final Parsec Problem.
New research might have solved the problem, and dark matter plays a role in the solution.
Continue reading “A Solution to the “Final Parsec Problem?””Our Carbon Dioxide Emissions Have a Mesmerizing Side
Our CO2 emissions are warming the planet and making life uncomfortable and even unbearable in some regions. In July, the planet set consecutive records for the hottest day.
NASA is mapping our emissions, and while what they show us isn’t uplifting, it is visually appealing in a ghoulish way. Maybe the combination of visual appeal and ghoulishness will build momentum in the fight against climate change.
Continue reading “Our Carbon Dioxide Emissions Have a Mesmerizing Side”Astronauts Can Now Watch 4K Streaming Video on the Station
We take high definition streaming for granted in many parts of the world. Even now, as I type this article, I have the Martian streaming in high definition but until now astronauts on board the Space Station have had to accept low definition streaming. A team of researchers at NASA have developed and used a new system using an aircraft as a relay. A laser terminal was installed on a research aircraft and data was sent to a ground station. The signals were sent around the Earth and beamed to a relay satellite which then sent the signal on to the Space Station. What the astronauts will actually use it for is less likely to be streaming HD movies but will certainly be able to take advantage of the high bandwidth for science data and communications.
Continue reading “Astronauts Can Now Watch 4K Streaming Video on the Station”The Shelf Life of Many Medications Is Shorter Than A Round Trip To Mars
Check any container of over-the-counter medicine, and you’ll see its expiration date. Prescription medicines have similar lifetimes, and we’re told to discard old medications rather than hold on to them. Most of them lose their effectiveness over time, and some can even become toxic. We’re discouraged from disposing of them in our wastewater because they can find their way into other organisms, sometimes with deleterious effects.
We can replace them relatively easily on Earth, but not on a space mission beyond Low Earth Orbit.
Continue reading “The Shelf Life of Many Medications Is Shorter Than A Round Trip To Mars”Astronomers Have Tools That Can Help Detect Deepfake Images
There’s a burgeoning arms race between Artificial Intelligence (AI) deepfake images and the methods used to detect them. The latest advancement on the detection side comes from astronomy. The intricate methods used to dissect and understand light in astronomical images can be brought to bear on deepfakes.
Continue reading “Astronomers Have Tools That Can Help Detect Deepfake Images”A Pair of CubeSats Using Ground Penetrating Radar Could Map The Interior of Near Earth Asteroids
Characterizing near-Earths asteroids (NEAs) is critical if we hope to eventually stop one from hitting us. But so far, missions to do so have been expensive, which is never good for space exploration. So a team led by Patrick Bambach of the Max Planck Institute for Solar System Research in Germany developed a mission concept that utilizes a relatively inexpensive 6U CubeSat (or, more accurately, two of them) to characterize the interior of NEAs that would cost only a fraction of the price of previous missions.
Continue reading “A Pair of CubeSats Using Ground Penetrating Radar Could Map The Interior of Near Earth Asteroids”