Quick Action Let Hubble Watch the Earliest Stages of an Unfolding Supernova Detonation

Astronomers recently witnessed supernova SN 2020fqv explode inside the interacting Butterfly galaxies, located about 60 million light-years away in the constellation Virgo. Researchers quickly trained NASA's Hubble Space Telescope on the aftermath. Along with other space- and ground-based telescopes, Hubble delivered a ringside seat to the first moments of the ill-fated star's demise, giving a comprehensive view of a supernova in the very earliest stage of exploding. Hubble probed the material very close to the supernova that was ejected by the star in the last year of its life. These observations allowed researchers to understand what was happening to the star just before it died, and may provide astronomers with an early warning system for other stars on the brink of death. Credits: NASA, ESA, Ryan Foley (UC Santa Cruz); Image Processing: Joseph DePasquale (STScI)

If it weren’t for supernova remnants we wouldn’t have much knowledge of supernovae themselves. If a supernova explosion is the end of a star’s life, then we can also thank forensic astrophysics for much of our knowledge. The massive exploding stars leave behind brilliant and mesmerizing evidence of their catastrophic ends, and much of what we know about supernovae comes from studying the remnants rather than the explosions themselves. Supernova remnants like the Crab Nebula and SN 1604 (Kepler’s Supernova) are some of our most-studied objects.

Observing an active supernova in the grip of its own destruction can be difficult. But it looks like the Hubble Space Telescope is up to the task.

Continue reading “Quick Action Let Hubble Watch the Earliest Stages of an Unfolding Supernova Detonation”

The Sun Blasted Out a Huge Flare and CME; We Could See Auroras on Halloween

NASA’s Solar Dynamics Observatory captured this image of a solar flare — as seen in the bright flash at the Sun’s lower center — on Oct. 28, 2021. The image shows a subset of extreme ultraviolet light that highlights the extremely hot material in flares and which is colorized here in teal. Credit: NASA/SDO

Auroral fireworks for Halloween? It just might happen, depending on where you live.

Continue reading “The Sun Blasted Out a Huge Flare and CME; We Could See Auroras on Halloween”

Lightweight, Flexible Lens Could be the Future of Space Telescopes

Holograms are useful for more than interesting-looking baubles in gift shops.  Materials scientists have used them for applications from stress/strain gauges to data storage systems.  It turns out they would also be useful in making extraordinarily lightweight, flexible mirrors for space telescopes.  A new study led by researchers at the Rensselear Polytechnic Institue shows how that might happen.

Continue reading “Lightweight, Flexible Lens Could be the Future of Space Telescopes”

“Mechazilla” is Getting its Arms. Now it can Catch Starships!

Credit: NASA Spaceflight

The past few weeks have seen a flurry of activity at SpaceX’s Boca Chica Launch Complex! In addition to the SN 20 prototype completing a static fire test with three of the new Raptor Vacuum 6 engines this month, the facility’s “Mechazilla” Launch Tower recently received a giant pair of steel arms. Once integrated with the ~135m (~450 ft) tower, these arms will be responsible for “catching” spent Starships and Super Heavy boosters as they return to Earth.

The Tower will also prepare missions by stacking first stage boosters with Starships and refueling these elements for the next launch. In this respect, the Launch Tower is a crucial piece of the Orbital Launch Site (OLS) architecture that Elon Musk has planned for Boca Chica. Once the Starship completes its Orbital Flight Test (which could happen soon!), Boca Chica will become a spaceflight hub where launches and retrievals are conducted regularly.

Continue reading ““Mechazilla” is Getting its Arms. Now it can Catch Starships!”

Proposed Centaur Mission Could Catch Comets in the Act of Formation

A recent plan would send a Centaur mission to Jupiter’s orbit and follow a comet through formation.

From Mercury to the depths of the distant Kuiper Belt, there aren’t many unexplored corners of the solar system out there. One class of object, however, remains to be visited: the transitional Centaurs out beyond the orbit of Jupiter. Now, a new study out from the the University of Chicago recently accepted in The Planetary Science Journal looks at the feasibility of sending a mission by mid-century to intercept, follow and watch a Centaur asteroid as it evolves into a mature inner solar system comet.

Continue reading “Proposed Centaur Mission Could Catch Comets in the Act of Formation”

A Mars Colony Could be a Hydrogen Factory, Providing Propellant for the Inner Solar System

There are lots of potential uses for a Mars colony.  It could be a research outpost, mining colony, or even a possible second home if something happens to go drastically wrong on our first one.  But it could also be a potential source of what is sure to be one of the most valuable elements in the space economy – hydrogen.  

Continue reading “A Mars Colony Could be a Hydrogen Factory, Providing Propellant for the Inner Solar System”

Early Earth was Pummeled 10x More Than Previously Estimated

It’s no secret that Earth was bombarded with plenty of meteors for billions of years during the solar system’s early formation.  Estimates vary on how much material impacted the planet, but it had a considerable effect on the planet’s atmosphere and the evolution of life. Now, a new study from a team led by researchers at the Southwest Research Institute puts the number at almost ten times the number of previously estimated impacts.  That much of a difference could dramatically change how geologists and planetary scientists view the early Earth.

Continue reading “Early Earth was Pummeled 10x More Than Previously Estimated”

Researchers Use Ancient Literature to Track 3,000 Years of Auroras

EIELSON AIR FORCE BASE, Alaska -- The Aurora Borealis, or Northern Lights, shines above Bear Lake here Jan. 18. The lights are the result of solar particles colliding with gases in Earth's atmosphere. Early Eskimos and Indians believed different legends about the Northern Lights, such as they were the souls of animals dancing in the sky or the souls of fallen enemies trying to rise again. (U.S. Air Force photo by Senior Airman Joshua Strang)

Auroral activity on Earth varies over time. As the magnetic poles drift, auroras can appear at different latitudes around the globe. Solar activity also affects them, with powerful solar storms pushing the auroras further into mid-latitudes.

In an effort to better understand how auroras move around, how they’ll move in the future, and when powerful solar storms might pose a threat, a team of researchers have tracked auroral activity for the last 3,000 years.

Continue reading “Researchers Use Ancient Literature to Track 3,000 Years of Auroras”

The Radio Signal From Proxima Centauri Came From Earth After All

The three telescopes at CSIRO’s Parkes Observatory. Credit: Red Empire Media/CSIRO.

Turns out we were hearing ourselves! Earth can be a noisy place when listening to stars.

Late last year, a story was leaked indicating that the Murriyang radio telescope in Australia had detected a “signal-of-interest”. Dubbed “blc1” (Breakthrough Listen Candidate 1), the signal appeared to originate from the direction of Proxima Centauri, the closest neighbouring star to the Sun. The signal had yet to be fully analyzed when the story was leaked. Now that the analysis is complete, research shows blc1 is in fact “RFI” – radio frequency interference – and not an interstellar signal.

But while it’s not aliens – or “Proxima Centaurians” as lead author on the signal analysis Dr. Sofia Sheikh whimsically refers to them – new methodologies for conducting radio-based SETI (Search for Extraterrestrial Intelligence) have been developed by analyzing blc1; further honing our ability to distinguish future potential ET signals from our own planet.

Simulation of Proxima Centauri b , Rocky World in the Proxima Centauri System – SpaceEngine by author
Continue reading “The Radio Signal From Proxima Centauri Came From Earth After All”

This is How You Get Moons. An Earth-Sized World Just got Pummeled by Something Huge.

An MIT-led team has discovered evidence of a giant impact in the nearby HD 17255 star system, in which an Earth-sized terrestrial planet and a smaller impactor likely collided at least 200,000 years ago, stripping off part of one planet’s atmosphere. Credits:Image: Mark A. Garlick

Titanic collisions are the norm in young solar systems. Earth’s Moon was the result of one of those collisions when the protoplanet Theia collided with Earth some 4.5 billion years ago. The collision, or series of collisions, created a swirling mass of ejecta that eventually coalesced into the Moon. It’s called the Giant Impact Hypothesis.

Astronomers think that collisions of this sort are a common part of planet formation in young solar systems, where things haven’t settled down into predictability. But seeing any of these collisions around other stars has proved difficult.

Continue reading “This is How You Get Moons. An Earth-Sized World Just got Pummeled by Something Huge.”