What’s Causing Those Landslides on Mars? Maybe Underground Salt and Melting Ice

Changes in Mar’s geography always attract significant scientific and even public attention.  A hope for signs of liquid water (and therefore life) is likely one of the primary driving forces behind this interest.  One particularly striking changing feature is the Recurring Slope Lineae (RSL) originally found by the Mars Reconnaissance Orbiter (MRO). Now, scientists at the SETI Institute have a modified theory for where those RSLs might develop – a combination of water ice and salt just under the Martian surface.

Continue reading “What’s Causing Those Landslides on Mars? Maybe Underground Salt and Melting Ice”

Electrons Can Get Accelerated to Nearly the Speed of Light As They Interact With the Earth’s Magnetosphere

Electrons serve many purposes in physics.  They are used by some particle accelerators and they underpin our modern world in the silicon chips that run the world’s computers.  They’re also prevalent in space, where they can occasionally be seen floating around in a plasma in the magnetospheres of planets.  Now, a team from the German Research Centre for Geosciences (GFZ) lead by Drs Hayley Allison and Yuri Shprits have discovered that those electrons present in the magnetosphere can be accelerated up to relativistic speeds, and that could potentially be hazardous to our increasing orbital infrastructure.

Continue reading “Electrons Can Get Accelerated to Nearly the Speed of Light As They Interact With the Earth’s Magnetosphere”

Astronomers Can Predict When a Galaxy’s Star Formation Ends Based on the Shape and Size of its Disk

An ensemble of twenty-five disk galaxies. The view on the left shows light emitted in the H-alpha line from interstellar gas as a result of ongoing star-formation, while the panels on the right shows the optical light emitted by a mix of young (bluer) and old (redder) stars. Each galaxy can be seen rotated edge-on below its face-on view. Image Credit: TNG Collaboration

A galaxy’s main business is star formation. And when they’re young, like youth everywhere, they keep themselves busy with it. But galaxies age, evolve, and experience a slow-down in their rate of star formation. Eventually, galaxies cease forming new stars altogether, and astronomers call that quenching. They’ve been studying quenching for decades, yet much about it remains a mystery.

A new study based on the IllustrisTNG simulations has found a link between a galaxy’s quenching and its stellar size.

Continue reading “Astronomers Can Predict When a Galaxy’s Star Formation Ends Based on the Shape and Size of its Disk”

A New Radar Instrument Will Try To Fill the Void Left By Arecibo

Observational astronomy is dependent on its data, and therefore also dependent on the instruments that collect that data.  So when one of those instruments fails it is a blow to the profession as a whole.  The collapse of the Arecibo Telescope last year after it was damaged by Hurricane Maria in 2017 permanently deprived the radio astronomy world of one of its primary observational tools. Now a team at the National Radio Astronomy Observatory (NRAO) hopes to upgrade an existing telescope at the Green Bank Observatory in West Virginia to replace the failed Puerto Rican one and provide even more precise images of near Earth objects in the radio spectrum.

Continue reading “A New Radar Instrument Will Try To Fill the Void Left By Arecibo”

What Looked Like Phosphine On Venus Might Actually Just Be Sulfur Dioxide

There’s nothing like a good old fashioned science fight.  When the discovery being challenged is one of the most public and intriguing of the last year, it’s bound to be even more interesting.  A team of scientists, led by Andrew Lincowski and Victoria Meadows at the University of Washington (UW), and involving members from a variety of NASA labs and other universities, has challenged the discovery of phosphine in the atmosphere of Venus that was first announced last year.  Their explanation is much simpler: it was most likely sulfur dioxide, one of the most abundant materials already known to be in Venus’ atmosphere.

Continue reading “What Looked Like Phosphine On Venus Might Actually Just Be Sulfur Dioxide”

Dark Energy Survey Finds Hundreds of New Gravitational Lenses

It’s relatively rare for a magical object from fantasy stories to have a analog in real life.  A truly functional crystal ball (or palantir) would be useful for everything from military operations to checking up on grandma. While nothing exists to be able to observe the mundanities of everyday life, there is something equivalent for extraordinarily far away galaxies: gravitational lenses.  Now a team led by Xiaosheng Huang from Lawrence Berkeley National Laboratory (LBNL) and several universities around the world have published a list of more than 1200 new gravitational lensing candidates.

Continue reading “Dark Energy Survey Finds Hundreds of New Gravitational Lenses”

SLS Will be Tested Again in About 3 Weeks

The core stage for the first flight of NASA’s Space Launch System rocket is seen in the B-2 Test Stand during a scheduled eight minute duration hot fire test, Saturday, Jan. 16, 2021, at NASA’s Stennis Space Center near Bay St. Louis, Mississippi. Credits: NASA/Robert Markowitz

In November of 2021, NASA will embark on a new era of space exploration as they make the inaugural launch of the Space Launch System (SLS). When it enters service, this booster will be the most powerful rocket since the Saturn V, which took the Apollo astronauts to the Moon. This is fitting since the SLS will be the rocket returning astronauts to the Moon by 2024 (as part of Project Artemis).

To get the SLS ready for its first launch, NASA has been running the Core Stage through a series of tests designed to test all the systems and components of the heavy-launch system – collectively known as a “Green Run.” The next step in this process will be a second Green Run Hot Fire Test, where all four RS-25 engines on the SLS Core Stage will fire at once to show they can operate as part of a single integrated system.

Continue reading “SLS Will be Tested Again in About 3 Weeks”

Astronomers are now Finding Planetary Disks Around the Smallest, Least Massive Stars

Credit: NASA/JPL-Caltech

Astronomers have been watching planetary systems form around sun-like stars for decades. And now, new observations with the ALMA telescope reveal the same process playing out around the smallest, but most common, stars in galaxy.

Continue reading “Astronomers are now Finding Planetary Disks Around the Smallest, Least Massive Stars”

Every Challenge Astronauts Will Face on a Flight to Mars

Nuclear-powered transit habitat
An artist's conception shows a Mars transit habitat with a nuclear propulsion system. Credit: NASA

In 1972, the Space Race officially ended as NASA sent one last crew of astronauts to the surface of the Moon (Apollo 17). This was the brass ring that both the US and the Soviets were reaching for, the “Moonshot” that would determine who had supremacy in space. In the current age of renewed space exploration, the next great leap will clearly involve sending astronauts to Mars.

This will present many challenges that will need to be addressed in advance, many of which have to do with simply getting the astronauts there in one piece! These challenges were the subject of a presentation made by two Indian researchers at the SciTech Forum 2020, an annual event hosted by the International Academy of Astronautics (IAA), RUDN University, and the American Astronomical Society (AAS).

Continue reading “Every Challenge Astronauts Will Face on a Flight to Mars”

Narrowing Down the Mass of Dark Matter

A section of the virtual universe, a billion light years across, showing how dark matter is distributed in space, with dark matter halos the yellow clumps, interconnected by dark filaments. Cosmic void, shown as the white areas, are the lowest density regions in the Universe. Credit: Joachim Stadel, UZH

Most of the matter of the universe is of a form unknown to physics. While we don’t know what the identity of the dark matter is, a new insight provided by quantum gravity is helping to drastically narrow down its mass.

Continue reading “Narrowing Down the Mass of Dark Matter”