We Could Find Extraterrestrial Civilizations by Their Air Pollution

Exoplanet Kepler 62f would need an atmosphere rich in carbon dioxide for water to be in liquid form. Artist's Illustration: NASA Ames/JPL-Caltech/T. Pyle

Upcoming telescopes will give us more power to search for biosignatures on all the exoplanets we’ve found. Much of the biosignature conversation is centred on biogenic chemistry, such as atmospheric gases produced by simple, single-celled creatures. But what if we want to search for technological civilizations that might be out there? Could we find them by searching for their air pollution?

If a distant civilization was giving our planet a cursory glance in its own survey of alien worlds and technosignatures, they couldn’t help but notice our air pollution.

Could we turn the tables on them?

Continue reading “We Could Find Extraterrestrial Civilizations by Their Air Pollution”

Magnetic Fields Help Shape the Formation of New Planets

In all of scientific modeling, the models attempting to replicate planetary and solar system formation are some of the most complicated.  They are also notoriously difficult to develop.  Normally they center around one of two formative ideas: planets are shaped primarily by gravity or planets are shaped primarily by magnetism.  Now a new theoretical model has been developed by a team at the University of Zurich (UZH) that uses math from both methodologies to inform the most complete model yet of planetary formation.

Continue reading “Magnetic Fields Help Shape the Formation of New Planets”

Juno Just Saw a Spacerock Crash Into Jupiter

Timing is extraordinarily important in many aspects of astronomy.  If an astronomer or their instrument is looking the wrong way at the wrong time they could miss something spectacular.  Alternatively, there are moments when our instruments capture something unexpected in regions of space that we were searching for something else.  That is exactly what happened recently when a team of scientists, led by Rohini Giles at the Southwest Research Institute, saw an image of what is likely a meteor impacting Jupiter’s atmosphere.  

Continue reading “Juno Just Saw a Spacerock Crash Into Jupiter”

The Largest Crater on the Moon Reveals Secrets About its Early History

Thorium concentrations measured by Lunar Prospector across the vast South Pole–Aitken Basin on the lunar far side are shown here, illustrating how mantle material ejected by an impact event about 4.3 billion years ago is currently distributed across the surface. Warmer colors represent higher concentrations; contour lines are at intervals of 0.5 part per million. Credit: Daniel P. Moriarty III

One of the oldest, deepest, and largest impact craters on the Moon provides a window into the history and makeup of our celestial companion, and needs to be studied in more detail, says a team of lunar scientists. The South Pole-Aitken Basin on the Moon formed from a gigantic impact about 4.3 billion years ago. Scientists say a more detailed analysis of this area will help refine the timeline of events in the Moon’s development, as well as help explain the dramatic differences between the lunar nearside and farside.

Continue reading “The Largest Crater on the Moon Reveals Secrets About its Early History”

NASA’s Perseverance Rover: The Most Ambitious Space Mission Ever?

Artist's impression of the Perseverance rover on Mars. Credit: NASA-JPL

When it comes to Mars exploration, NASA has more success than any other agency. This week, they’ll attempt to land another sophisticated rover on the Martian surface to continue the search for evidence of ancient life. The Mars Perseverance rover will land on Mars on Thursday, February 18th, and it’s bringing some very ambitious technologies with it.

Continue reading “NASA’s Perseverance Rover: The Most Ambitious Space Mission Ever?”

NASA’s InSight Will Have Reduced Capability Until a Dust Devil Cleans off its Solar Panels

Credit: NASA/JPL-Caltech

All eyes are on Mars this week, and, if we’re being honest, NASA’s InSight lander isn’t the star of the show right now. At the time of writing, we’re anxiously waiting to find out whether or not the Perseverance rover survives its fiery arrival at Mars. But Entry, Descent, and Landing (EDL) is just the first hazard that awaits robotic missions to the red planet. Mars exploration is a marathon, not a sprint, and while Perseverance is just getting started, InSight, which has been on the red planet for two years now, is approaching a tough leg of the race.

InSight’s nemesis: Martian dust. The same cruel villain that killed the Opportunity rover back in 2018.

Continue reading “NASA’s InSight Will Have Reduced Capability Until a Dust Devil Cleans off its Solar Panels”

Water Shaped Features on Mars Much Earlier Than Previously Believed

Credit: NASA/JPL-Caltech

In two days (on Thursday, Feb. 18th, 2021), NASA’s Perseverance rover will land on Mars. As the latest robotic mission in the Mars Exploration Program (MEP), Perseverance will follow in the footsteps of its sister mission, Curiosity. Just in time for its arrival, research conducted at the Southwest Research Institute (SwRI) has shown that Mars’ surface was shaped by flowing water several million years earlier than previously thought.

Continue reading “Water Shaped Features on Mars Much Earlier Than Previously Believed”

This is What Happens to Spacecraft When They Re-Enter the Earth’s Atmosphere

The Russian Progress 76P MS-15 cargo spacecraft, after undocking from the International Space Station and burned up in the atmosphere, asl planned in February 2021. Image via astronaut Soichi Noguchi.

When one of the Russian Progress resupply ships undocks from the International Space Station, timing is everything. The Progress needs to fire its engines at just the right time to instigate the deorbit burn in order for the ship to enter the atmosphere at just the right place, so that its destructive re-entry occurs over the Pacific Ocean. That way, any potential surviving bits and pieces that might reach Earth will hit far away from any land masses – which are home to people, buildings, and other things we don’t want to get bonked.

Continue reading “This is What Happens to Spacecraft When They Re-Enter the Earth’s Atmosphere”

The Surprising Discovery of Ceramic Chips Inside Meteorites Means There Were Wild Temperature Variations In the Early Solar System

A protosolar disk is the disk of material around a young stellar object that isn't yet a star. It's called a protoplanetary disk once the star has formed and begun fusion. Planetesimals are the building blocks of planets and are present in both stages of a disk's evolution. Image Credit: NASA/JPL

Meteorites are excellent windows into early solar system formation.  Many were formed in the those early days, and unlike rocks on the Earth, most are not affected by billions of years of tectonic activity that wipes away any of their original structure.  Recently a team led by Nicolas Dauphas and Justin Hu at the University of Chicago (UC) found that the formation process for many of these meteorites was much more violent than previously thought.

Continue reading “The Surprising Discovery of Ceramic Chips Inside Meteorites Means There Were Wild Temperature Variations In the Early Solar System”

A Combined Map of Almost 15,000 Dust Storms on Mars

Data in the world of astronomy is spread out in so many different places.  There are archives for instruments on individual spacecraft and telescopes.  Sometimes all that is needed to get new insight out of old data is to collect it all together and analyze a whole set rather than isolated instances.  That is exactly what happened recently when a team from the Harvard Center for Astrophysics collected and analyzed data about almost 15,000 dust storms that have taken place on Mars over the last eight Martian years.

Continue reading “A Combined Map of Almost 15,000 Dust Storms on Mars”