Planetary systems form out of the remnant gas and dust of a primordial star. The material collapses into a protoplanetary disk around the young star, and the clumps that form within the disk eventually become planets, asteroids, or other bodies. Although we understand the big picture of planetary formation, we’ve yet to fully understand the details. That’s because the details are complicated.
Continue reading “Primordial Asteroids That Never Suffered Massive Collisions all Seem to be Larger Than 100 km. Why?”What Would Raindrops be Like on Other Worlds?
Precipitation is much more widespread throughout that solar system than commonly assumed. Obviously it rains water on Earth. But it snows carbon dioxide on Mars, rains methane on Titan, sulfuric acid on Venus, and could potentially rain diamonds on Neptune. The type of material falling out of the sky is almost as varied as the planets themselves. New research from a team led by Kaitlyn Loftus at Harvard found a similarity for all of the liquid materials that constitute rain throughout the solar system – all of the drops, no matter the material, are roughly the same size.
Continue reading “What Would Raindrops be Like on Other Worlds?”Jupiter Could Make an Ideal Dark Matter Detector
So, you want to find dark matter, but you don’t know where to look? A giant planet might be exactly the kind of particle detector you need! Luckily, our solar system just happens to have a couple of them available, and the biggest and closest is Jupiter. Researchers Rebecca Leane (Stanford) and Tim Linden (Stockholm) released a paper this week describing how the gas giant just might hold the key to finding the elusive dark matter.
Continue reading “Jupiter Could Make an Ideal Dark Matter Detector”Perseverance Takes a Selfie With Ingenuity. It’s Almost Time to fly
Perseverance is having a proud parent moment in this image, looking like it’s waiting with a child at the bus stop on the first day of school.
Continue reading “Perseverance Takes a Selfie With Ingenuity. It’s Almost Time to fly”What are the Best Ways to Search for Technosignatures?
The search for extraterrestrial intelligence (SETI) has long roots in human history. With the advent of modern technologies, scientists were finally able to start scanning the skies for any sign of life. When the search first started back in the 1960s, it focused almost exclusively on trying to detect radio signals. Over the decades, no irrefutable evidence of any artificial radio signals was ever found. Financial support started to drift away from the discipline, and where the money goes so do many scientists.
But more recently, the spike in interest in exoplanet research has breathed new life into the search for intelligent life, now commonly referred to as the search for “technosignatures”. In 2018, NASA sponsored a conference where scientists who were involved with the field came to discuss its current state. That meeting was followed up by a meeting last year sponsored by the Blue Marble Institute, which NASA also helped to sponsor. Now a working paper has come out from the group of SETI scientists that attended the conference. Numerous potential mission ideas to find technosignatures are described in the paper. It’s clear the search for extraterrestrial intelligence isn’t limited just to radio astronomy anymore.
Continue reading “What are the Best Ways to Search for Technosignatures?”An Intermediate-Mass Black Hole Discovered Through the Gravitational Lensing of a Gamma-ray Burst
Black holes come in three sizes: small, medium, and large. Small black holes are of stellar mass. They form when a large star collapses at the end of its life. Large black holes lurk in the centers of galaxies and are millions or billions of solar masses. Middle-sized black holes are those between 100 to 100,000 solar masses. They are known as Intermediate Mass Black Holes (IMBHs), and they are the kind we least understand.
Continue reading “An Intermediate-Mass Black Hole Discovered Through the Gravitational Lensing of a Gamma-ray Burst”Perseverance Captured This Image of a “Rainbow” on Mars, but it’s just a Lens Flare in the Rover’s Camera
Did the Perseverance rover capture a rainbow on Mars? This image, from the rover’s left rear Hazard Camera, sure looks like it. But alas, no. However, film director JJ Abrams would be proud.
Continue reading “Perseverance Captured This Image of a “Rainbow” on Mars, but it’s just a Lens Flare in the Rover’s Camera”Mars Helicopter Survives its First Night on Mars is Getting Ready to Fly
On April 3rd, the Mars Ingenuity helicopter was removed from its carbon-fiber shield on the Perseverance rover’s belly. On Sunday, April 11th, it will make its first attempt at a powered, controlled flight, becoming the first aircraft to operate on another planet. In the meantime, Ingenuity accomplished another major milestone as it survived its first full night on the Martian surface.
Continue reading “Mars Helicopter Survives its First Night on Mars is Getting Ready to Fly”Here’s a Strange Rock That Perseverance Shot With its Laser
Perseverance has been busy lately. After testing its systems out, taking the first sound recording ever on the Red Planet, and dropping off its helicopter sidekick, now it has the opportunity to work on its primary mission: stare at some rocks. And occasionally zap them with a laser.
Continue reading “Here’s a Strange Rock That Perseverance Shot With its Laser”Lunar Gateway Will Maintain its Orbit With a 6 kW ion Engine
When NASA sends astronauts back to the Moon as part of the Artemis Program, they will be taking the long view. Rather than being another “footprints and flags” program, the goal is to create a lasting infrastructure that will ensure a “sustained program of lunar exploration.” A major element in this plan is the Lunar Gateway, an orbital habitat that astronauts will use to venture to and from the surface.
The first step in establishing the Gateway is the deployment of two critical modules – the Habitation and Logistics Outpost (HALO) and the Power and Propulsion Element (PPE). According to a recent update, NASA (along with Maxar Technologies and Busek Co.) recently completed a hot-fire test of the PPE propulsion subsystem – the first of many that will ensure that the PPE and HALO will be ready for launch by 2024.
Continue reading “Lunar Gateway Will Maintain its Orbit With a 6 kW ion Engine”