A Planet Lost Its Atmosphere, So Its Volcanoes Made It a New One

Credit: NASA, ESA, and R. Hurt (IPAC/Caltech)

A red-dwarf star called Gliese 1132 or GJ 1132 for short (astronomers and their fun nicknames!) smolders on some 41 light-years from the sun in the southern constellation Vela, just a few degrees away from the southern cross. In 2015, astronomers using the MEarth South telescope array at Cerro Tololo Inter-American Observatory (CTIO) in Chile found an Earth-sized planet orbiting extremely close to the little red star. Known as GJ 1132b, the planet orbits in a blistering 1.6 days. Its original hydrogen and helium atmosphere is thought to have long since been blown away by the powerful stellar winds experienced by the planet due to its extreme proximity to its parent. New observations from the Hubble Space Telescope revealed a surprise from the speedy exoplanet; it seems to have re-formed an atmosphere!

Continue reading “A Planet Lost Its Atmosphere, So Its Volcanoes Made It a New One”

The Giant Magellan Telescope’s 6th Mirror has Just Been Cast. One More to Go

By 2029, the Giant Magellan Telescope (GMT) in northern Chile will begin collecting its first light from the cosmos. As part of a new class of next-generation instruments known as “extremely large telescopes” (ELTs), the GMT will combine the power of sophisticated primary mirrors, flexible secondary mirrors, adaptive optics (AOs), and spectrometers to see further and with greater detail than any optical telescopes that came before.

At the heart of the telescope are seven monolithic mirror segments, each measuring 8.4 m (27.6 ft) in diameter, which will give it the resolving power of a 24.5 m (80.4 ft) primary mirror. According to recent statements from the GMT Organization (GMTO), the University of Arizona’s Richard F. Caris Mirror Lab began casting the sixth and seventh segments for the telescope’s primary mirror (which will take the next four years to complete).

More

Alcubierre Gives us an Update on his Ideas About Warp Drives

The Enterprise using warp drive, as seen in Star Trek Beyond. Credit: Paramount Pictures

If you want a galaxy-spanning science fiction epic, you’re going to need faster than light travel. The alternative is taking decades or centuries to reach an alien star system, which isn’t nearly as much fun. So, you start with some wild scientific idea, add a bit of technobabble, and poof! Quam Celerrime ad Astra. Everything from wormholes to hyperspace has been used in sci-fi, but perhaps the best known FTL trope is warp drive.

Continue reading “Alcubierre Gives us an Update on his Ideas About Warp Drives”

Measuring the Temperatures of Red Giants is Actually Pretty Tricky

Artist's impression of a red giant star. If the star is in a binary pair, what happens to its sibling? Credit:NASA/ Walt Feimer

Red giant stars are, well, red and giant. But astronomers have always had difficulty estimating their temperatures, due to their complex and turbulent atmospheres. Without an accurate gauge of their temperatures, it’s difficult to tell when they will end their lives in gigantic supernova explosions. Now a team of astronomers have developed a more effective technique for taking the temperature of red giants, based on the amount of iron in the stars.

Continue reading “Measuring the Temperatures of Red Giants is Actually Pretty Tricky”

The Oldest Stars Help Tell us how big the Universe is

Artist’s impression of the star in its multi-million year long and previously unobservable phase as a large, red supergiant. Credit: CAASTRO / Mats Björklund (Magipics)

Astronomers are struggling to understand the discrepancies when measuring the expansion rate of the universe with different methods, and are desperate for any creative idea to break the tension. A new method involving some of the oldest stars in the universe could just do the trick.

Continue reading “The Oldest Stars Help Tell us how big the Universe is”

Microbes Found That Survive on the by-Products of Radioactive Decay

The rocks seen here along the shoreline of Lake Salda in Turkey were formed over time by microbes that trap minerals and sediments in the water. These so-called microbialites were once a major form of life on Earth and provide some of the oldest known fossilized records of life on our planet. NASA's Mars 2020 Perseverance mission will search for signs of ancient life on the Martian surface. Studying these microbial fossils on Earth has helped scientists prepare for the mission. Image Credit: NASA/JPL-Caltech

In addition to investigating the big questions about life in our Universe (origins, evolution, distribution, etc.), one of the chief aims of astrobiologists is to characterize extraterrestrial environments to determine if life could exist there. However, there are still unresolved questions about the range of conditions under which life can survive and thrive. Placing better constraints on this will help astrobiologists search for life beyond Earth.

To get a better understanding of how ecosystems can exist beneath the ocean floor (so far from the Sun) a team of researchers led by the University of Rhode Island’s Graduate School of Oceanography (GSO) conducted a study on microbes in ancient seafloor sediment. What they found, to their surprise, was that these lifeforms are sustained primarily by chemicals created by the natural irradiation of water molecules.

Continue reading “Microbes Found That Survive on the by-Products of Radioactive Decay”

Organic Material Found on an Asteroid Sample Returned by Hayabusa 1

Panspermia is an idea that has been around for a long time.  It was first mentioned in the 5th century BC by Anaxagoras, one of the most prominent pre-Socratic philosophers.  The problem with the theory is that there’s never really been any evidence to back it up.  That lack of evidence has changed dramatically in the last 20 or so years, and recently more data has been added to that dataset.  A team from Royal Holloway, part of the University of London, found organic material and water in a sample of Itokawa, the asteroid the first Hayabusa mission visited over 10 years ago.

Continue reading “Organic Material Found on an Asteroid Sample Returned by Hayabusa 1”