When one of the Russian Progress resupply ships undocks from the International Space Station, timing is everything. The Progress needs to fire its engines at just the right time to instigate the deorbit burn in order for the ship to enter the atmosphere at just the right place, so that its destructive re-entry occurs over the Pacific Ocean. That way, any potential surviving bits and pieces that might reach Earth will hit far away from any land masses – which are home to people, buildings, and other things we don’t want to get bonked.
Continue reading “This is What Happens to Spacecraft When They Re-Enter the Earth’s Atmosphere”The Surprising Discovery of Ceramic Chips Inside Meteorites Means There Were Wild Temperature Variations In the Early Solar System
Meteorites are excellent windows into early solar system formation. Many were formed in the those early days, and unlike rocks on the Earth, most are not affected by billions of years of tectonic activity that wipes away any of their original structure. Recently a team led by Nicolas Dauphas and Justin Hu at the University of Chicago (UC) found that the formation process for many of these meteorites was much more violent than previously thought.
Continue reading “The Surprising Discovery of Ceramic Chips Inside Meteorites Means There Were Wild Temperature Variations In the Early Solar System”A Combined Map of Almost 15,000 Dust Storms on Mars
Data in the world of astronomy is spread out in so many different places. There are archives for instruments on individual spacecraft and telescopes. Sometimes all that is needed to get new insight out of old data is to collect it all together and analyze a whole set rather than isolated instances. That is exactly what happened recently when a team from the Harvard Center for Astrophysics collected and analyzed data about almost 15,000 dust storms that have taken place on Mars over the last eight Martian years.
Continue reading “A Combined Map of Almost 15,000 Dust Storms on Mars”A Cluster of Black Holes Found Inside a Globular Cluster of Stars
Black holes come in at least two sizes: small and large. Small black holes are formed from stars. When a large star reaches the end of its life, it typically ends in a supernova. The remnant core then collapses under its own weight, forming a black hole or neutron star. Small stellar-mass black holes are typically tens of solar masses. Large black holes lurk in the centers of galaxies. These supermassive black holes can be millions or billions of solar masses. They formed during the early universe and triggered the formation and evolution of galaxies around them.
Continue reading “A Cluster of Black Holes Found Inside a Globular Cluster of Stars”NASA has Decided to Start Building the Lunar Gateway Using the Falcon Heavy
In October of 2024, NASA will send “the first woman and the next man” to the Moon as part of the Artemis Program. This will be the first crewed mission to the lunar surface, and the first mission beyond Low Earth Orbit (LEO), since the closing of the Apollo Era in 1972. Beyond that, NASA plans to establish infrastructure on and around the Moon that will allow for “sustained lunar exploration and development.”
A key aspect of this is the Lunar Gateway, an orbiting habitat that will allow astronauts to make regular trips to and from the lunar surface. After much consideration, NASA recently announced that they have selected SpaceX to launch the foundational elements of the Gateway – the Power and Propulsion Element (PPE) and the Habitation and Logistics Outpost (HALO) – by May of 2024 (at the earliest).
Continue reading “NASA has Decided to Start Building the Lunar Gateway Using the Falcon Heavy”Lunar Spacecraft Gets an Upgrade to Capture New Perspectives of the Moon
Eleven years into its mission, the Lunar Reconnaissance Orbiter (LRO) is starting to show its age, but a recent software update promises to give the spacecraft a new lease on life. As NASA’s eye in the sky over the Moon, the LRO has been responsible for some of the best Lunar observations since the days of Apollo. This new upgrade will allow that legacy to continue.
Continue reading “Lunar Spacecraft Gets an Upgrade to Capture New Perspectives of the Moon”How Old is the Ice at Mars’ North Pole?
On Earth, the study of ice core samples is one of many methods scientists use to reconstruct the history of our past climate change. The same is true of Mars’ northern polar ice cap, which is made up of many layers of frozen water that have accumulated over eons. The study of these layers could provide scientists with a better understanding of how the Martian climate changed over time.
This remains a challenge since the only way we are able to study the Martian polar ice caps right now is from orbit. Luckily, a team of researchers from UC Boulder was able to use data obtained by the High-Resolution Imaging Science Experiment (HiRISE) aboard the Mars Reconnaissance Orbiter (MRO) to chart how the northern polar ice caps’ evolved over the past few million years.
Continue reading “How Old is the Ice at Mars’ North Pole?”ESA’s Solar Orbiter ‘Hides’ Behind the Sun
A deep-space mission is about to pull a ‘vanishing act,’ through mid-February, as the European Space Agency’s Solar Orbiter (affectionately known as ‘SolO’ to mission controllers) makes a crucial pass behind the Sun.
Continue reading “ESA’s Solar Orbiter ‘Hides’ Behind the Sun”The Crab Nebula Seen in 3-Dimensions
The Crab Nebula is arguably one of the most famous objects in the night sky. It was delineated as M1 in Messier’s famous catalogue. It is the remnants of a supernova that was actually visible in day time almost 1000 years ago. And its remnants have been astonishing both professional and amateur astronomers ever since.
Now thanks to modern technology, we can get an updated view of this iconic supernova remnant. Researchers from a variety of institutions, led by Thomas Martin from the Universite Laval, have created a three dimensional image of the nebula for the first time ever.
Continue reading “The Crab Nebula Seen in 3-Dimensions”Quantum Theory Proposes That Cause and Effect Can Go In Loops
Causality is one of those difficult scientific topics that can easily stray into the realm of philosophy. Science’s relationship with the concept started out simply enough: an event causes another event later in time. That had been the standard understanding of the scientific community up until quantum mechanics was introduced. Then, with the introduction of the famous “spooky action at a distance” that is a side effect of the concept of quantum entanglement, scientists began to question that simple interpretation of causality.
Now, researchers at the Université Libre de Bruxelles (ULB) and the University of Oxford have come up with a theory that further challenges that standard view of causality as a linear progress from cause to effect. In their new theoretical structure, cause and effect can sometimes take place in cycles, with the effect actually causing the cause.
Continue reading “Quantum Theory Proposes That Cause and Effect Can Go In Loops”