The gravitational field of a rotating black hole is powerful and strange. It is so powerful that it warps space and time back upon itself, and it is so strange that even simple concepts such as motion and rotation are turned on their heads. Understanding how these concepts play out is challenging, but they help astronomers understand how black holes generate such tremendous energy. Take, for example, the concept of frame dragging.
Continue reading “Another Way to Extract Energy From Black Holes?”Plastic Waste on our Beaches Now Visible from Space, Says New Study
According to the United Nations, the world produces about 430 million metric tons (267 U.S. tons) of plastic annually, two-thirds of which are only used for a short time and quickly become garbage. What’s more, plastics are the most harmful and persistent fraction of marine litter, accounting for at least 85% of total marine waste. This problem is easily recognizable due to the Great Pacific Garbage Patch and the amount of plastic waste that washes up on beaches and shores every year. Unless measures are taken to address this problem, the annual flow of plastic into the ocean could triple by 2040.
One way to address this problem is to improve the global tracking of plastic waste using Earth observation satellites. In a recent study, a team of Australian researchers developed a new method for spotting plastic rubbish on our beaches, which they successfully field-tested on a remote stretch of coastline. This satellite imagery tool distinguishes between sand, water, and plastics based on how they reflect light differently. It can detect plastics on shorelines from an altitude of more than 600 km (~375 mi) – higher than the International Space Station‘s (ISS) orbit.
Continue reading “Plastic Waste on our Beaches Now Visible from Space, Says New Study”Future Space Telescopes Could be Made From Thin Membranes, Unrolled in Space to Enormous Size
Space-based telescopes are remarkable. Their view isn’t obscured by the weather in our atmosphere, and so they can capture incredibly detailed images of the heavens. Unfortunately, they are quite limited in mirror size. As amazing as the James Webb Space Telescope is, its primary mirror is only 6.5 meters in diameter. Even then, the mirror had to have foldable components to fit into the launch rocket. In contrast, the Extremely Large Telescope currently under construction in northern Chile will have a mirror more than 39 meters across. If only we could launch such a large mirror into space! A new study looks at how that might be done.
Continue reading “Future Space Telescopes Could be Made From Thin Membranes, Unrolled in Space to Enormous Size”Voyager 1 is Forced to Rely on its Low Power Radio
Voyager 1 was launched waaaaaay back in 1977. I would have been 4 years old then! It’s an incredible achievement that technology that was built THAT long ago is still working. Yet here we are in 2024, Voyager 1 and 2 are getting older. Earlier this week, NASA had to turn off one of the radio transmitters on Voyager 1. This forced communication to rely upon the low-power radio. Alas technology around 50 years old does sometimes glitch and this was the result of a command to turn on a heater. The result was that Voyager 1 tripped into fault protection mode and switch communications! Oops.
Continue reading “Voyager 1 is Forced to Rely on its Low Power Radio”Webb Confirms a Longstanding Galaxy Model
Perhaps the greatest tool astronomers have is the ability to look backward in time. Since starlight takes time to reach us, astronomers can observe the history of the cosmos by capturing the light of distant galaxies. This is why observatories such as the James Webb Space Telescope (JWST) are so useful. With it, we can study in detail how galaxies formed and evolved. We are now at the point where our observations allow us to confirm long-standing galactic models, as a recent study shows.
Continue reading “Webb Confirms a Longstanding Galaxy Model”The Aftermath of a Neutron Star Collision Resembles the Conditions in the Early Universe
Neutron stars are extraordinarily dense objects, the densest in the Universe. They pack a lot of matter into a small space and can squeeze several solar masses into a radius of 20 km. When two neutron stars collide, they release an enormous amount of energy as a kilonova.
That energy tears atoms apart into a plasma of detached electrons and atomic nuclei, reminiscent of the early Universe after the Big Bang.
Continue reading “The Aftermath of a Neutron Star Collision Resembles the Conditions in the Early Universe”New View of Venus Reveals Previously Hidden Impact Craters
Think of the Moon and most people will imagine a barren world pockmarked with craters. The same is likely true of Mars albeit more red in colour than grey! The Earth too has had its fair share of craters, some of them large but most of the evidence has been eroded by centuries of weathering. Surprisingly perhaps, Venus, the second planet from the Sun does not have the same weathering processes as we have on Earth yet there are signs of impact craters, but no large impact basins! A team of astronomers now think they have secured a new view on the hottest planet in the Solar System and revealed the missing impact sites.
Continue reading “New View of Venus Reveals Previously Hidden Impact Craters”Multimode Propulsion Could Revolutionize How We Launch Things to Space
In a few years, as part of the Artemis Program, NASA will send the “first woman and first person of color” to the lunar surface. This will be the first time astronauts have set foot on the Moon since the Apollo 17 mission in 1972. This will be followed by the creation of permanent infrastructure that will allow for regular missions to the surface (once a year) and a “sustained program of lunar exploration and development.” This will require spacecraft making regular trips between the Earth and Moon to deliver crews, vehicles, and payloads.
In a recent NASA-supported study, a team of researchers at the University of Illinois Urbana-Champaign investigated a new method of sending spacecraft to the Moon. It is known as “multimode propulsion,” a method that integrates a high-thrust chemical mode and a low-thrust electric mode – while using the same propellant. This system has several advantages over other forms of propulsion, not the least of which include being lighter and more cost-effective. With a little luck, NASA could rely on multimode propulsion-equipped spacecraft to achieve many of its Artemis objectives.
Continue reading “Multimode Propulsion Could Revolutionize How We Launch Things to Space”China Trains Next Batch of Taikonauts
China has a fabulously rich history when it comes to space travel and was among the first to experiment in rocket technology. The invention of the rocket is often attributed to the Sung Dynasty (AD 960-1279.) Since then, China has been keen to develop and build its own space industry. The Chinese National Space Administration has already successfully landed probes on the Moon but is preparing for their first human landers. Chinese astronauts are sometimes known as taikonauts and CNSA has just confirmed their fourth batch of taikonauts are set for a lunar landing.
Continue reading “China Trains Next Batch of Taikonauts”NASA Focusses in on Artemis III Landing Sites.
It was 1969 that humans first set foot on the Moon. Back then, the Apollo mission was the focus of the attempts to land on the Moon but now, over 50 years on, it looks like we are set to head back. The Artemis project is the program that hopes to take us back to the Moon again and it’s going from strength to strength. The plan is to get humans back on the Moon by 2025 as part of Artemis III. As a prelude to this, NASA is now turning its attention to the possible landing sites.
Continue reading “NASA Focusses in on Artemis III Landing Sites.”