Weekly Space Hangout: November 18, 2020 – Dr. Ralph Lorenz, Planetary Scientist and Dragonfly Mission Architect

This week we are airing Fraser’s pre-recorded interview with Dr. Ralph Lorenz, planetary scientist and aerospace engineer from the Johns Hopkins Applied Physics Laboratory. Ralph is the Mission Architect of the upcoming Dragonfly Mission to Titan, and the author of the new book, Saturn’s Moon Titan Owners’ Workshop Manual.

Continue reading “Weekly Space Hangout: November 18, 2020 – Dr. Ralph Lorenz, Planetary Scientist and Dragonfly Mission Architect”

Some of the Milky Way’s oldest stars aren’t where they’re expected to be

Representation of the orbit of the star 232121.57-160505.4. Credit: Cordoni, et al

One of the ways we categorize stars is by their metallicity. That is the fraction of heavier elements a star has compared to hydrogen and helium. It’s a useful metric because the metallicity of a star is a good measure of its age.

Continue reading “Some of the Milky Way’s oldest stars aren’t where they’re expected to be”

Earth’s toughest bacteria can survive unprotected in space for at least a year

Credit: Ott, E., Kawaguchi, Y., Kölbl, D. et al.

A remarkable microbe named Deinococcus radiodurans (the name comes from the Greek deinos meaning terrible, kokkos meaning grain or berry, radius meaning radiation, and durare meaning surviving or withstanding) has survived a full year in the harsh environment of outer space aboard (but NOT inside) the International Space Station. This plucky prokaryote is affectionately known by fans as Conan the Bacterium, as seen in this classic 1990s NASA article.

The JAXA (Japanese Aerospace Exploration Agency) ISS module Kib? has an unusual feature for spacecraft, a front porch! This exterior portion of the space station is fitted with robotic equipment to complete various experiments in outer space’s brutal conditions. One of these experiments was to expose cells of D. radiodurans for a year and then test the cells to see if they not only would survive but could reproduce effectively afterward. D. radiodurans proved to be up to the challenge, and what a challenge it was!

Continue reading “Earth’s toughest bacteria can survive unprotected in space for at least a year”

An Iceberg the Size of South Georgia Island is on a Collision Course with… South Georgia Island

An iceberg the size of South Georgia Island is on a collision course with... South Georgia Island. Image Credit: contains modified Copernicus Sentinel data (2017–20), processed by ESA; Antarctic Iceberg Tracking Database

Back in July 2017, satellites watched as an enormous iceberg broke free from Antarctica’s Larsen C ice shelf on the Antarctic Peninsula. The trillion-ton behemoth has been drifting for over three years now. While it stayed close to its parent ice shelf for the first couple of years, it’s now heading directly for a collision with South Georgia Island.

It could be a slow-motion collision, but a collision nonetheless. If it does collide with the island and its shallow sea-floor, it won’t be the first iceberg to do so. And if the first one was any indication, wildlife could suffer.

Continue reading “An Iceberg the Size of South Georgia Island is on a Collision Course with… South Georgia Island”

Past Supernovae Could be Written Into Tree Rings

A bubble of gas expanding at roughly 11 million miles per hour created by the shockwave from a supernova. Credit: NASA

When stars reach the end of their lifespan, they undergo gravitational collapse at their cores. The type of explosion that results is one of the most awesome astronomical events imaginable and (on rare occasions) can even be seen with the naked eye. The last time this occurred was in 1604 when a Type Ia supernova took place over 20,000 light-years away – commonly-known as Kepler’s Supernova (aka. SN1604)

Given the massive amounts of radiation they release, past supernovae are believed to have played a role in the evolution of our planet and terrestrial life. According to new research by CU Boulder geoscientist Robert Brakenridge, these same supernovae may have left traces in our planet’s biology and geology. These findings could have implications given fears that Betelgeuse might be on the verge of going supernova.

Continue reading “Past Supernovae Could be Written Into Tree Rings”

Astronomers think they’ve seen a magnetar form for the first time; the collision of two neutron stars

Artist view of a kilonova producing a magnetar. Credit: NASA, ESA, and D. Player (STScI)

A magnetar is a neutron star with a magnetic field thousands of times more powerful than those of typical neutron stars. Their fields are so strong that they can generate powerful, short-duration events such as soft gamma repeaters and fast radio bursts. While we have learned quite a bit about magnetars in recent years, we still don’t understand how neutron stars can form such intense magnetic fields. But that could soon change thanks to a new study.

Continue reading “Astronomers think they’ve seen a magnetar form for the first time; the collision of two neutron stars”

There’s a Vast Microbial Ecosystem Underneath the Crater that Wiped Out the Dinosaurs

A three-dimensional cross-section of the hydrothermal system in the Chicxulub impact crater and its seafloor vents. The system has the potential for harboring microbial life. Illustration by Victor O. Leshyk for the Lunar and Planetary Institute.

How did life arise on Earth? How did it survive the Hadean eon, a time when repeated massive impacts excavated craters thousands of kilometres in diameter into the Earth’s surface? Those impacts turned the Earth into a hellish place, where the oceans turned to steam, and the atmosphere was filled with rock vapour. How could any living thing have survived?

Ironically, those same devastating impacts may have created a vast subterranean haven for Earth’s early life. Down amongst all those chambers and pathways, pumped full of mineral-rich water, primitive life found the shelter and the energy needed to keep life on Earth going. And the evidence comes from the most well-known extinction event on Earth: the Chicxulub impact event.

Continue reading “There’s a Vast Microbial Ecosystem Underneath the Crater that Wiped Out the Dinosaurs”

The family tree of the Milky Way. The mergers that gave us the galaxy we see today

An edge-on view of a spiral galaxy. Credit: ESO

Galaxies build themselves up slowly over time by cannibalizing their neighbors. Using an advanced suite of computer simulations, researchers have now traced back the evolutionary history of our own Milky Way.

Continue reading “The family tree of the Milky Way. The mergers that gave us the galaxy we see today”

Fast radio bursts within the Milky Way seem to be coming from magnetars

That's a pretty impressive flare.

Fast radio bursts are some of the most mysterious events known in astronomy, but they are slowly becoming better understood. Case in point: recent observations of a fast radio burst in the Milky Way reveals the powerhouse behind the blasts: a flaring magnetar.

Continue reading “Fast radio bursts within the Milky Way seem to be coming from magnetars”