For decades, astronomers have speculated that there may be water on the Moon. In recent years, this speculation was confirmed one orbiting satellite after another detected water ice around the Moon’s southern polar region. Within this part of the lunar surface, known as the South-Pole Aitken Basin, water ice is able to persist because of the many permanently-shadowed craters that are located there.
But until now, scientists were operating under the assumption that lunar water was only to be found in permanently shadowed craters. But thanks to NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA), water has been observed on the sunlit side of the Moon for the first time. This discovery indicates that water may be distributed all across the lunar surface, and not limited to the dark corners.
The behaviour of galaxies in the early Universe attracts a lot of attention from researchers. In fact, everything about the early Universe is under intense scientific scrutiny for obvious reasons. But unlike the Universe’s first stars, which have all died long ago, the galaxies we see around us—including our own—have been here since the early days.
Current scientific thinking says that in the early days of the Universe, the galaxies grew slowly, taking billions of years to become what they are now. But new observations show that might not be the case.
It now seems clear that dark matter interacts more than just gravitationally. Earlier studies have hinted at this, and a new study supports the idea even further. What’s interesting about this latest work is that it studies dark matter interactions through entropy.
While ghouls and goblins may provide the ghastly delights many of us associate with this time of year, NASA has just released a series of spooky space-themed posters that are more unearthly than any monsters or scary stories told around terrestrial campfires. This year for Halloween, the space agency has released a series of spine-tingling posters called Galaxy of Horrors. The terrifying destinations highlighted within are all based on real locations in the Universe.
Neutron stars are the remnants of massive stars that explode as supernovae at the end of their fusion lives. They’re super-dense cores where all of the protons and electrons are crushed into neutrons by the overpowering gravity of the dead star. They’re the smallest and densest stellar objects, except for black holes, and possibly other arcane, hypothetical objects like quark stars.
When two neutron stars merge, we can detect the resulting gravitational waves. But some aspects of these mergers are poorly-understood. One question surrounds short-lived gamma-ray bursts from these mergers. Previous studies have shown that these bursts may come from the decay of heavy elements produced in a neutron star merger.
A new study strengthens our understanding of these complex mergers and introduces a model that explains the gamma rays.
One of the most interesting things about space exploration is how many technologies have an impact on our ability to reach farther. New technologies that might not immediately be used in space can still eventually have a profound long-term impact. On the other hand, everyone knows some technologies will be immediately game changing. Superconductors, or materials that do not have any electrical resistance, are one of the technologies that have the potential to be game changing. However, hurdles to their practical use have limited their applicability to a relatively small sub-set of applications, like magnetic resonance imaging devices and particle accelerators. But another major hurdle to the broad use of superconductors has now been cleared – a lab at the University of Rochester (UR) has just developed one that works at almost room temperature. The big caveat is it has to be under pressure similar to that in the Earth’s core.
Unless you’re reading this in an aircraft or the International Space Station, then you’re currently residing on the surface of a planet. You’re here because the planet is here. But how did the planet get here? Like a rolling snowball picking up more snow, planets form from loose dust and gas surrounding young stars. As the planets orbit, their gravity draws in more of the lose material and they grow in mass. We’re not certain when the process of planet formation begins in orbit of new stars, but we have incredible new insights from one of the youngest solar systems ever observed called IRS 63.
Primordial Soup
Swirling in orbit of young stars (or protostars) are massive disks of dust and gas called circumstellar disks. These disks are dense enough to be opaque hiding young solar systems from visible light. However, energy emanating from the protostar heats the dust which then glows in infrared radiation which more easily penetrates obstructions than wavelengths of visible light. In fact, the degree to which a newly forming star system is observed in either visible or infrared light determines its classification. Class 0 protostars are completely enshrouded and can only be observed in submillimeter wavelengths corresponding to far-infrared and microwave light. Class I protostars, are observable in the far-infrared, Class II in near-infrared/red, and finally a Class III protostar’s surface and solar system can be observed in visible light as the remaining dust and gas is either blown away by the increasing energy of the star AND/OR has formed into PLANETS! That’s where we came from. That leftover material orbiting newly forming stars is what accumulates to form US. The whole process from Class 0 to Class III, when the solar system leaves its cocoon of dust and joins the galaxy, is about 10 million years. But at what stage does planet formation begin? The youngest circumstellar disks we’d observed are a million years old and had shown evidence that planetary formation had already begun. The recently observed IRS 63 is less than 500,000 years old – Class I – and shows signs of possible planet formation. The excitement? We were surprised to see evidence of planetary formation so early in the life of a solar system.
This may be one of the strangest craters you’ll ever see.
Ryder crater is located near the south pole of our Moon, and it has a bizarre oblong shape (approximately 13 x 17 km in size), with a ridge cutting across the middle.
The majority of impact craters are round. How did Ryder crater end up in this odd shape?
On the evening of Wednesday, Oct. 21st, the crew of Expedition 63 finally returned to Earth after spending 196 days in space. It all began when NASA astronaut Chris Cassidy (commander) and Russian cosmonauts Ivan Vagner and Anatoly Ivanishin (both flight engineers) departed the International Space Station (ISS) aboard their Soyuz spacecraft at 07:32 PM EDT (04:32 PM PDT) and landed in Kazakhstan by 10:54 PM EDT (07:54 PM PDT).