Astronomers Will Be Able to Use the World’s Biggest Radio Telescope to Search for Signals from Extraterrestrial Civilizations

Image of the FAST telescope in China
Image of the FAST Telescope in China

Back in April, we reported on how a collaboration between the Chinese Academy of Sciences, the Breakthrough Listen Initiative, and the SETI Institute planned to use the new Five-hundred-meter Aperture radio Telescope (FAST) to search for signs of extraterrestrial life.  We now caught up with another of the project scientists to flesh out some more details of their observational plans and what observations they hope to make in the future.

Continue reading “Astronomers Will Be Able to Use the World’s Biggest Radio Telescope to Search for Signals from Extraterrestrial Civilizations”

7% of the Stars in the Milky Way’s Center Came From a Single Globular Cluster That Got Too Close and Was Broken Up

Central region of the Milky Way in infrared light. With this image, NASA's Spitzer Space Telescope has photographed the inner 890 x 640 light years of the Milky Way. The nuclear star cluster is located in a small area near the central massive black hole. The extended structures in the image are mostly clouds of gas and dust from the spiral arms of the Milky Way, which lie in the line of sight between Earth and the Galactic Centre. Image Credit: NASA/JPL-Caltech/S. Stolovy (Spitzer Science Center/Caltech)

The heart of the Milky Way can be a mysterious place. A gigantic black hole resides there, and it’s surrounded by a retinue of stars that astronomers call a Nuclear Star Cluster (NSC). The NSC is one of the densest populations of stars in the Universe. There are about 20 million stars in the innermost 26 light years of the galaxy.

New research shows that about 7% of the stars in the NSC came from a single source: a globular cluster of stars that fell into the Milky Way between 3 and 5 billion years ago.

Continue reading “7% of the Stars in the Milky Way’s Center Came From a Single Globular Cluster That Got Too Close and Was Broken Up”

The Air Leak on the International Space Station is Worse Than Previously Believed

The International Space Station in orbit round Earth. Credit: NASA

On Tuesday, Sept. 29th, the Russian State Space Corporation (Roscosmos) announced that astronauts aboard the International Space Station (ISS) had found the source of a suspected leak. The crew of Expedition 63 – NASA astronaut and Commander Chris Cassidy and Russian cosmonauts Anatoly Ivanishin and Ivan Vagner – had been searching for this leak since August, and determined that it was “beyond expected levels.”

Roscosmos also said in a statement that “it was established that the spot is located in the Zvezda (star) service module, which contains scientific equipment.” They also emphasized that the leak “is not dangerous for the life and health of the ISS crew and does not prevent the ISS continuing manned flight.” Nevertheless, the amount of atmosphere lost may require additional oxygen to be pumped into the station.

Continue reading “The Air Leak on the International Space Station is Worse Than Previously Believed”

Here’s a Clever Idea, Looking for the Shadows of Trees On Exoplanets to Detect Multicellular Life

Exoplanet Kepler 62f would need an atmosphere rich in carbon dioxide for water to be in liquid form. Artist's Illustration: NASA Ames/JPL-Caltech/T. Pyle

That’s the kind of headline that can leave us scratching our heads. How can you see tree shadows on other worlds, when those planets are tens or hundreds of light years—or even further—away. As it turns out, there might be a way to do it.

One team of researchers thinks that the idea could potentially be used to answer one of humanity’s long-standing questions: Are we alone?

Continue reading “Here’s a Clever Idea, Looking for the Shadows of Trees On Exoplanets to Detect Multicellular Life”

The Carina Nebula. Seen With and Without Adaptive Optics

This image shows a comparison of the new image (top) of the western wall of the Carina Nebula taken by the international Gemini Observatory, a Program of NSF’s NOIRLab, and an image of the same region without Adaptive Optics (bottom). The top image was taken with the Gemini South telescope with the GSAOI instrument using the GeMS adaptive optics system, and the bottom image was taken at the Cerro Tololo Inter-American Observatory with the Víctor M. Blanco 4-meter Telescope using the NEWFIRM instrument. Image Credit: International Gemini Observatory/CTIO/NOIRLab/NSF/AURA

Ever wonder how modern astronomical observatories take such clear images of distant objects? Advances in mirror design have allowed for larger and larger primary mirrors. But adaptive optics play a huge role, too.

Continue reading “The Carina Nebula. Seen With and Without Adaptive Optics”

Lakes On Titan Will Have Layers, Like Lakes On Earth, But for a Completely Different Reason

Lakes on Earth are a common sight in many locales.  They’re central to the recreation and livelihood of millions of people.  Few of those people think of the hydrodynamics that happen in a lake system.  It is common for lakes to stratify into different layers. On Earth that stratification is the result of the sun heating the upper layer of water, which then becomes less dense and floats on top of the colder, more dense layer beneath it.  Now, scientists from the Planetary Science Institute (PSI) have found similar dynamic cycles in a different kind of lake – the ethane and methane lakes on Titan.

Continue reading “Lakes On Titan Will Have Layers, Like Lakes On Earth, But for a Completely Different Reason”

The Colorful Walls of an Exposed Impact Crater on Mars

A view of the interior of an impact crater on Mars shows prominent bright layer of bedrock. Credit: NASA/JPL/UArizona

Impact craters have been called the “poor geologists’ drill,” since they allow scientists to look beneath to the subsurface of a planet without actually digging down. It’s estimated that Mars has over 600,000 craters, so there’s plenty of opportunity to peer into the Red Planet’s strata – especially with the incredible HiRISE (High Resolution Imaging Science Experiment) camera on board the Mars Reconnaissance Orbiter which has been orbiting and studying Mars from above since 2006.

Continue reading “The Colorful Walls of an Exposed Impact Crater on Mars”

Machine Learning Software is Now Doing the Exhausting Task of Counting Craters On Mars

The tiny black speck in the lower left corner of this image within the red circle is a cluster of recently formed craters spotted on Mars using a new machine-learning algorithm. This image was taken by the Context Camera aboard NASA's Mars Reconnaissance Orbiter in a region called Noctis Fossae, located at latitude -3.213, longitude: 259.415. Image Credit: NASA/JPL-Caltech/MSSS

Does the life of an astronomer or planetary scientists seem exciting?

Sitting in an observatory, sipping warm cocoa, with high-tech tools at your disposal as you work diligently, surfing along on the wavefront of human knowledge, surrounded by fine, bright people. Then one day—Eureka!—all your hard work and the work of your colleagues pays off, and you deliver to humanity a critical piece of knowledge. A chunk of knowledge that settles a scientific debate, or that ties a nice bow on a burgeoning theory, bringing it all together. Conferences…tenure…Nobel Prize?

Well, maybe in your first year of university you might imagine something like that. But science is work. And as we all know, not every minute of one’s working life is super-exciting and gratifying.

Sometimes it can be dull and repetitious.

Continue reading “Machine Learning Software is Now Doing the Exhausting Task of Counting Craters On Mars”

What the Astronauts Saw as They Orbited the Moon During Apollo 17

The crescent Earth rises above the lunar horizon in this spectacular photograph taken by the Apollo 17 crew in lunar orbit in December, 1972, during NASA’s final lunar landing mission in the Apollo program. Credit: NASA. Image editing and enhancement: Kevin Gill.

This view always gets me *right there.* But this new version really gets me.

This is what Apollo 17 astronauts saw in December of 1972 as they came around the farside of the Moon: the blue and white crescent Earth rising above the stark lunar horizon. And now image editing guru Kevin Gill has sharpened the image, giving it more texture, color and contrast. I can imagine this sharp, spectacular view must be close to what the astronauts saw with their own eyes.  

“There I was, and there you are, the Earth – dynamic, overwhelming…” said Apollo 17 astronaut Gene Cernan.  

Continue reading “What the Astronauts Saw as They Orbited the Moon During Apollo 17”

Those are Exoplanets. You’re Looking at Actual Exoplanets 63 Light-Years Away!

Credit: Axel Quetz / MPIA Graphics Department

Located 63.4 light-years from Earth in the constellation Pictor is the young and bright blue star, Beta Pictoris. In 2008, observations conducted from the ESO’s Paranal Observatory in Chile confirmed the presence of an extrasolar planet. This planet was Beta Pictoris b, a Super-Jupiter with an orbital period of up between 6890 and 8890 days (~19 to 24 years) that was confirmed by directly imaging it as it passed behind the star.

In August of 2019, a second planet was detected (another Super-Jupiter) orbiting closer to Beta Pictoris. However, due to its proximity to its parent star, it could only be studied through indirect means (radial velocity measurements). After conducting a reanalysis of data obtained by the VLT, astronomers with the GRAVITY collaboration were able to confirm the existence of Beta Pictoris c through direct imaging.

Continue reading “Those are Exoplanets. You’re Looking at Actual Exoplanets 63 Light-Years Away!”