Radishes Can Likely Grow in Lunar Regolith

Radishes in the section with the least water germinated first and best.Image Credit: NASA/JPL-Caltech

For many of us, gardening has been a therapeutic distraction during this time of pandemic quarantine. But some researchers from the Jet Propulsion Lab have been gardening at home with a specific goal in mind: growing food on the Moon.

Continue reading “Radishes Can Likely Grow in Lunar Regolith”

The Moons of Uranus Are Fascinating Enough On Their Own That We Should Send a Flagship Mission Out There

What’s the most interesting fact you know about Uranus? The fact that its rotational axis is completely out of line with every other planet in the solar system?  Or the fact that Uranus’ magnetosphere is asymmetrical, notably tilted relative to its rotational axis, and significantly offset from the center of the planet?  Or the fact that it’s moons are all named after characters from Shakespeare or Alexander Pope?

All of those facts (with the exception of the literary references) have come from a very limited dataset. Some of the best data was collected during a Voyager 2 flyby in 1986. Since then, the only new data has come from Earth-based telescopes.  While they’ve been steadily increasing in resolution, they have only been able to scratch the surface of what may be lurking in the system surrounding the closest Ice Giant.  Hopefully that is about to change, as a team of scientists has published a white paper advocating for a visit from a new Flagship class spacecraft.

Continue reading “The Moons of Uranus Are Fascinating Enough On Their Own That We Should Send a Flagship Mission Out There”

What Cracked the Earth’s Outer Shell and Started its Plate Tectonics?

A snapshot of a model from the new work, showing the late stages of growth and coalescence of a new global fracture network. Fractures are in black / shadow, and colors show stresses (pink color denotes tensile stress, blue color denotes compressive stress). Image Credit: Tang et al, 2020.

Earth’s lithosphere is made up of seven large tectonic plates and a number of smaller ones. The theory of plate tectonics that describes how these plates move is about 50 years old. But there’s never really been an understanding of how this system developed, and how the Earth’s shell split into separate plates and started moving.

Now a group of researchers have a possible explanation.

Continue reading “What Cracked the Earth’s Outer Shell and Started its Plate Tectonics?”

The Moon is an Ideal Spot for a Gravitational Wave Observatory

High-resolution view of the lunar surface (JAXA/SELENE)

In the coming years, multiple space agencies will be sending missions (including astronauts) to the Moon’s southern polar region to conduct vital research. In addition to scouting resources in the area (in preparation for the construction of a lunar base) these missions will also investigate the possibility of conducting various scientific investigations on the far side of the Moon.

However, two prominent scientists (Dr. Karan Jani and Prof. Abraham Loeb) recently published a paper where they argue that another kind of astronomy could be conducted on the far side of the Moon – Gravitational Wave astronomy! As part of NASA’s Project Artemis, they explain how a Gravitational-wave Lunar Observatory for Cosmology (GLOC) would be ideal for exploring GW in the richest and most challenging frequencies.

Continue reading “The Moon is an Ideal Spot for a Gravitational Wave Observatory”

800 Million Years Ago, it Was Raining Asteroids on the Earth and Moon

An artist's illustration of an asteroid shower on the Earth-Moon system. Image Credit: Murayama/Osaka Univ.

Natural processes here on Earth continually re-shape the planet’s surface. Craters from ancient asteroid strikes are erased in a short period of time, in geological terms. So how can researchers understand Earth’s history, and how thoroughly it may have been pummeled by asteroid strikes?

Scientists can turn their attention to our ancient companion, the Moon.

Continue reading “800 Million Years Ago, it Was Raining Asteroids on the Earth and Moon”

Beyond “Fermi’s Paradox” III: What is the Great Filter?

The Karl Jansky Very Large Array at night, with the Milky Way visible in the sky. Credit: NRAO/AUI/NSF; J. Hellerman

Welcome back to our Fermi Paradox series, where we take a look at possible resolutions to Enrico Fermi’s famous question, “Where Is Everybody?” Today, we examine the possibility that there is something in the Universe that prevents life from reaching the point where we would be able to hear from it.

In 1950, Italian-American physicist Enrico Fermi sat down to lunch with some of his colleagues at the Los Alamos National Laboratory, where he had worked five years prior as part of the Manhattan Project. According to various accounts, the conversation turned to aliens and the recent spate of UFOs. Into this, Fermi issued a statement that would go down in the annals of history: “Where is everybody?

This became the basis of the Fermi Paradox, which refers to the high probability estimates for the existence of extraterrestrial intelligence (ETI) and the apparent lack of evidence. Seventy years later, we still haven’t answered that question, which has led to many theories as to why the “Great Silence” endures. A popular one is that there must be “Great Filter” that prevents life from reaching an advanced stage of development.

Continue reading “Beyond “Fermi’s Paradox” III: What is the Great Filter?”

Dust Seen Streaming Out of Namibia Into the Atlantic Ocean

Landsat 8 strikes again.

Landsat 8 is the United States Geological Survey’s most recently launched satellite, and it holds the powerful Operational Land Imager (OLI.) The OLI is a powerful multi-spectral imager with a wide dynamic range.

The OLI does a great job of keeping an eye on Earth, and now its captured images of winds in Namibia picking dust up and carrying it out over the Atlantic Ocean.

Continue reading “Dust Seen Streaming Out of Namibia Into the Atlantic Ocean”

Wow! An Actual Picture of Multiple Planets Orbiting a Sunlike Star

This image, captured by the SPHERE instrument on ESO’s Very Large Telescope, shows the star TYC 8998-760-1 accompanied by two giant exoplanets. This is the first time astronomers have directly observed more than one planet orbiting a star similar to the Sun. The image was captured by blocking the light from the young, Sun-like star (on the top left corner) using a coronagraph, which allows for the fainter planets to be detected. The bright and dark rings we see on the star’s image are optical artefacts. The two planets are visible as two bright dots in the centre and bottom right of the frame. Image Credit: ESO/Bohn et al, 2020

We’ve detected thousands of exoplanets, but for the most part, nobody’s ever seen them. They’re really just data, and graphs of light curves. The exoplanet images you see here at Universe Today and other space websites are the creations of very skilled illustrators, equal parts data and creative license. But that’s starting to change.

The European Southern Observatory’s Very Large Telescope (VLT) has captured images of two exoplanets orbiting a young, Sun-like star.

Continue reading “Wow! An Actual Picture of Multiple Planets Orbiting a Sunlike Star”

SpaceX Finally Catches Both Halves of a Falcon 9 Fairing

A Falcon 9 rocket lifting off from Cape Canaveral. Credit: SpaceX

On July 20th, SpaceX launched a South Korean military communications satellite (ANASIS-II) using the same Falcon 9 that delivered a pair of astronauts to the International Space Station (ISS) back in May. And in another interesting development, this mission was the first time that SpaceX managed to not only retrieve the first stage booster at sea but also retrieved both halves of the payload fairing.

Continue reading “SpaceX Finally Catches Both Halves of a Falcon 9 Fairing”

Astronomers are Starting to Find Planets in Much Longer Orbits. Cooler, More Habitable Planets

This artist’s view shows the planet orbiting the young star Beta Pictoris. This exoplanet is the first to have its rotation rate measured. Its eight-hour day corresponds to an equatorial rotation speed of 100 000 kilometres/hour — much faster than any planet in the Solar System.

We’re getting better and better at detecting exoplanets. Using the transit method of detection, the Kepler Space Telescope examined over 530,000 stars and discovered over 2,600 explanets in nine years. TESS, the successor to Kepler, is still active, and has so far identified over 1800 candidate exoplanets, with 46 confirmed.

But what if, hidden in all that data, there were even more planets? Astronomers at Warwick University said they’ve found one of these “lost” planets, and that they think they’ll find even more.

Continue reading “Astronomers are Starting to Find Planets in Much Longer Orbits. Cooler, More Habitable Planets”