Japan’s Lunar Lander Fails to Check-in

Illustration: SLIM lander on the moon
An artist's conception shows Japan's SLIM lander on the moon. Credit: ISAS/JAXA

On January 19th, 2024, the Japanese Aerospace Exploration Agency (JAXA) successfully landed its Smart Lander for Investigating Moon (SLIM) on the lunar surface. In so doing, JAXA became the fifth national space agency to achieve a soft landing on the Moon – after NASA, the Soviet space program (Interkosmos), the European Space Agency, and the China National Space Agency (CNSA). SLIM has since experienced some technical difficulties, which included upending shortly after landing, and had to be temporarily shut down after experiencing power problems when its first lunar night began.

On the Moon, the day/night cycle lasts fourteen days at a time, which has a drastic effect on missions that rely on solar panels. Nevertheless, SLIM managed to reorient its panels and recharge itself and has survived three consecutive lunar nights since it landed. However, when another lunar night began on May 27th, JAXA announced that they had failed to establish communications with the lander. As a result, all science operations were terminated while mission controllers attempt to reestablish communications, which could happen later this month.

Continue reading “Japan’s Lunar Lander Fails to Check-in”

How Mars’ Moon Phobos Captures Our Imaginations

This is a colourized version of a black and white image captured by the ESA's Mars Express in 2010. Andrea Luck, a skilled image processor from Glasgow, improved the original image. Image Credit: ESA/DLR/FUBerlin/AndreaLuck CC BY. Original Image: https://www.planetary.org/space-images/20130714_phobosnd_img

For a small, lumpy chunk of rock that barely reflects any light, Mars’ Moon Phobos draws a lot of attention. Maybe because it’s one of only two moons to orbit the planet, and its origins are unclear. But some of the attention is probably because we have such great images of it.

Continue reading “How Mars’ Moon Phobos Captures Our Imaginations”

NASA has a New Database to Predict Meteoroid Hazards for Spaceflight

There are plenty of problems that spacecraft designers have to consider. Getting smacked in the sensitive parts by a rock is just one of them, but it is a very important one. A micrometeoroid hitting the wrong part of the spacecraft could jeopardize an entire mission, and the years of work it took to get to the point where the mission was actually in space in the first place. But even if the engineers who design spacecraft know about this risk, how is it best to avoid them? A new programming library from research at NASA could help.

Continue reading “NASA has a New Database to Predict Meteoroid Hazards for Spaceflight”

Evidence of Dark Matter Interacting With Itself in El Gordo Merger

Image from a computer simulation of the distribution of matter in the universe. Orange regions host galaxies; blue structures are gas and dark matter. Credit: TNG Collaboration

The Standard Model of particle physics does a good job of explaining the interactions between matter’s basic building blocks. But it’s not perfect. It struggles to explain dark matter. Dark matter makes up most of the matter in the Universe, yet we don’t know what it is.

The Standard Model says that whatever dark matter is, it can’t interact with itself. New research may have turned that on its head.

Continue reading “Evidence of Dark Matter Interacting With Itself in El Gordo Merger”

Two Seismometers are Going to the Moon to Measure Moonquakes

The Moon is shrinking and causing moonquakes. New seismometers will go there to measure them.
The Moon is shrinking and causing moonquakes. New seismometers will go to Shrodinger Basin to measure them.

Our Moon is shrinking and has been doing so since just after its formation ~4.5 billion years ago from a collision with the young Earth. That shrinkage, along with a constant rain of micrometeorites, causes lunar seismic activity. NASA plans to send two instruments to the Moon to measure its moonquakes. Those dual seismometers share technology first used on Mars by the InSight lander to measure more than a thousand marsquakes.

Continue reading “Two Seismometers are Going to the Moon to Measure Moonquakes”

Astronomers Have a New Way to Bypass Earth's Atmosphere

Left shows an image of a piece of sky observed with the hitherto best calibration technique. Right shows the same piece of sky with the new technique. More detail is visible, and what were once large, blurry patches now appear as single points. (c) LOFAR/Groeneveld et al.

Radio telescopes have an advantage over optical telescopes, in that radio telescope can be used even in cloudy conditions here on Earth. That’s because the longer wavelengths of radio waves can pass through clouds unhindered. However, some wavelengths are still partially obscured by portions of Earth’s atmosphere, especially by the ionosphere which traps human-made Radio Frequency Interference (RFI).  

Astronomers have developed a new calibration technique that allows them to take sharp images in low radio frequencies — between 16 and 30 MHz — for the first time, bypassing the influence of the ionosphere. The astronomers say this will allow them to study things like plasmas emanating from ancient black holes and perhaps even detect exoplanets that orbit small stars.

Continue reading “Astronomers Have a New Way to Bypass Earth's Atmosphere”

Hubble Pauses its Science Again

This image of NASA's Hubble Space Telescope was taken on May 19, 2009 after deployment during Servicing Mission 4. NASA

The Hubble Space Telescope has been shut down temporarily after one of its gyroscopes sent faulty telemetry readings back to Earth in late May. The venerable space-based observatory, which has been responsible for some of the most remarkable scientific advances of the last three decades, and stunning astrophotography that became a cultural mainstay, is in its thirty-fourth year of operation.

Continue reading “Hubble Pauses its Science Again”

Chinese Probe Collects Moon Samples and Heads for Earth

Chang'e-6 lander on the moon, as seen by a mini-rover nearby
An image captured by a camera-equipped rover shows China's Chang'e-6 lander with its robotic arm and a Chinese flag. (Credit: CLEP / CNSA)

China says its Chang’e-6 spacecraft has gathered up soil and rocks from the far side of the moon and has lifted off from the surface, beginning a journey to bring the samples back to Earth. The probe’s payload represents the first lunar samples ever collected from the far side.

In a status update, the China National Space Administration said the Chang’e-6 ascent module successfully reached lunar orbit, where it’s due to transfer the samples to a re-entry capsule hooked up to the probe’s orbiter. (Update: CNSA says the ascent module made its rendezvous with the orbiter and transferred the samples to the re-entry capsule on June 6.)

If all goes according to plan, the orbiter will leave the moon’s orbit, head back to Earth and drop off the re-entry capsule for retrieval in China’s Inner Mongolia region sometime around June 25.

Continue reading “Chinese Probe Collects Moon Samples and Heads for Earth”

NASA Wants Heavy Cargo Landers for the Moon

Early conceptual renderings of cargo variants of human lunar landing systems from Blue Origin.
Early conceptual renderings of cargo variants of human lunar landing systems from Blue Origin.

The Artemis Program represents NASA’s effort to return to the Moon. One of the goals of the project is to set up long-term exploration of the Earth’s only natural satellite. This will need much bulkier equipment than what the Apollo astronauts carried though, and this equipment needs to be transported to the Moon’s surface. Blue Origin and SpaceX, contracted by NASA to provide human landing systems, have begun developing vehicles that can safely deliver this equipment from space to the Moon’s surface.

Continue reading “NASA Wants Heavy Cargo Landers for the Moon”

Suppressing Starlight: How to Find Other Earths

One underappreciated aspect of the current flood of exoplanet discoveries is the technical marvels that enable it. Scientists and engineers must capture and detect minute signals from stars and planets light years away. With the technologies of even a few decades ago, that would have been impossible – now it seems commonplace. However, there are still some technical hurdles to overcome before finding the “holy grail” of exoplanet hunting – an Earth analog. To help that discussion, a team of researchers led by Bertrand Mennesson at NASA’s Jet Propulsion Laboratory has released a paper detailing the current experimental and theoretical work around one of the most critical technical aspects of researching exoplanet atmospheres – starshades.

Continue reading “Suppressing Starlight: How to Find Other Earths”