New View of the Swan Nebula From NASA’s Airborne SOFIA Telescope

The first released VST image shows the spectacular star-forming region Messier 17, also known as the Omega Nebula or the Swan Nebula. Credit: ESO/INAF-VST/OmegaCAM. Acknowledgement: OmegaCen/Astro-WISE/Kapteyn Institute.

The Omega Nebula (Messier 17), also known as the Swan Nebula because of its distinct appearance, is one of the most well-known nebulas in our galaxy. Located about 5,500 light-years from Earth in the constellation Sagittarius, this nebula is also one of the brightest and most massive star-forming regions in the Milky Way. Unfortunately, nebulas are very difficult to study because of the way their clouds of dust and gas obscure their interiors.

For this reason, astronomers are forced to examine nebulas in the non-visible wavelength to get a better idea of their makeup. Using the Stratospheric Observatory for Infrared Astronomy (SOFIA), a team of NASA scientists recently observed the Swan Nebula in the infrared wavelength. What they found has revealed a great deal about how this nebula and stellar nursery evolved over time.

Continue reading “New View of the Swan Nebula From NASA’s Airborne SOFIA Telescope”

Almost 800,000 Years Ago, an Enormous Meteorite Struck Earth. Now We Know Where.

A map of the Australasian strewnfield, where tektites from a meteor impact are spread over the Earth's surface. Image Credit: By syncmedia - Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=19184380

20% of the surface of Earth’s Eastern Hemisphere is littered with a certain kind of rock. Black, glossy blobs called tektites are spread throughout Australasia. Scientists know they’re from a meteorite strike, but they’ve never been able to locate the crater where it struck Earth.

Now a team of scientists seems to have found it.

Continue reading “Almost 800,000 Years Ago, an Enormous Meteorite Struck Earth. Now We Know Where.”

In About 3 Million Years, WASP-12b Will Spiral into its Star and be Consumed

Artist's impression of the searing-hot gas planet WASP-12b and its star. A Princeton-led team of astrophysicists has shown that this exoplanet is spiraling in toward its host star, heading toward certain destruction in about 3 million years. Credit: NASA/JPL-Caltech

Astronomers estimate that in about four billion years, our Sun will exit the main sequence phase of its existence and become a red giant. This will consist of the Sun running out of hydrogen and expanding to several times its current size. This will cause Earth to become uninhabitable since this Red Giant Sun will either blow away Earth’s atmosphere (rendering the surface uninhabitable) or expand to consume Earth entirely.

In a lot of ways, Earth is getting off easy with these predicted scenarios. Other planets, such as WASP-12b, don’t have the luxury of waiting billions of years for their star to reach the end of its lifespan before eating them up. According to a recent study by a team of Princeton-led astrophysicists, this extrasolar planet is spiraling in towards its star and will be consumed in a fiery death just 3 million years from now.

Continue reading “In About 3 Million Years, WASP-12b Will Spiral into its Star and be Consumed”

Hubble Finds Teeny Tiny Clumps of Dark Matter

Using the gravitational lensing technique, a team was able to examine how light from distant quasar was affected by intervening small clumps of dark matter. Credit: NASA/ESA/D. Player (STScI)

To put it simply, Dark Matter is not only believed to make up the bulk of the Universe’s mass but also acts as the scaffolding on which galaxies are built. But to find evidence of this mysterious, invisible mass, scientists are forced to rely on indirect methods similar to the ones used to study black holes. Essentially, they measure how the presence of Dark Matter affects stars and galaxies in its vicinity.

To date, astronomers have managed to find evidence of dark matter clumps around medium and large galaxies. Using data from the Hubble Space Telescope and a new observing technique, a team of astronomers from UCLA and NASA JPL found that dark matter can form much smaller clumps than previously thought. These findings were presented this week at the 235th meeting of the American Astronomical Society (AAS).

Continue reading “Hubble Finds Teeny Tiny Clumps of Dark Matter”

There’s a new method to measure the expansion rate of the Universe, but it doesn’t resolve the Crisis in Cosmology

The venerable Hubble Space Telescope. After 30 years, it's still a productive scientific workhorse. Image Credit: NASA/ESA

In a recent post I wrote about a study that argued dark energy isn’t needed to explain the redshifts of distant supernovae. I also mentioned we shouldn’t rule out dark energy quite yet, because there are several independent measures of cosmic expansion that don’t require supernovae. Sure enough, a new study has measured cosmic expansion without all that mucking about with supernovae. The study confirms dark energy, but it also raises a few questions.

Continue reading “There’s a new method to measure the expansion rate of the Universe, but it doesn’t resolve the Crisis in Cosmology”

The Perfect Stars to Search for Life On Their Planets

This infographic compares the characteristics of three classes of stars in our galaxy: Sunlike stars are classified as G stars; stars less massive and cooler than our Sun are K dwarfs; and even fainter and cooler stars are the reddish M dwarfs. The graphic compares the stars in terms of several important variables. The habitable zones, potentially capable of hosting life-bearing planets, are wider for hotter stars. The longevity for red dwarf M stars can exceed 100 billion years. K dwarf ages can range from 15 to 45 billion years. And, our Sun only lasts for 10 billion years. The relative amount of harmful radiation (to life as we know it) that stars emit can be 80 to 500 times more intense for M dwarfs relative to our Sun, but only 5 to 25 times more intense for the orange K dwarfs. Red dwarfs make up the bulk of the Milky Way's population, about 73%. Sunlike stars are merely 6% of the population, and K dwarfs are at 13%. When these four variables are balanced, the most suitable stars for potentially hosting advanced life forms are K dwarfs. Credits: NASA, ESA and Z. Levy (STScI)

We tend to think of our Earthly circumstances as normal. A watery, temperate world orbiting a stable yellow star. A place where life has persisted for nearly 4 billion years. It’s almost inevitable that when we think of other places where life could thrive, we use our own experience as a benchmark.

But should we?

Continue reading “The Perfect Stars to Search for Life On Their Planets”

TESS Finds a Planet That Orbits Two Stars

TOI 1338 b is a circumbinary planet orbiting its two stars. It was discovered by TESS. Image Credit: NASA's Goddard Space Flight Center/Chris Smith

Researchers working with data from NASA’s TESS (Transiting Exoplanet Survey Satellite) have a found a planet that orbits two stars. Initially, the system was identified by citizen scientists as a pair of eclipsing binary stars without a planet. But an intern taking a closer look at that data found that it was misidentified.

Continue reading “TESS Finds a Planet That Orbits Two Stars”

An Upcoming Impact With the Magellanic Clouds is Already Causing Star Formation in the Milky Way

A newfound cluster of young stars (blue star) sits on the periphery of the Milky Way. These stars probably formed from material originating from neighboring dwarf galaxies called the Magellanic Clouds. Credit: NASA/D. Nidever

For some time, astronomers have known that collisions or mergers between galaxies are an integral part of cosmic evolution. In addition to causing galaxies to grow, these mergers also trigger new rounds of star formation as fresh gas and dust are injected into the galaxy. In the future, astronomers estimate that the Milky Way Galaxy will merge with the Andromeda Galaxy, as well as the Small and Large Magellanic Clouds in the meantime.

According to new results obtained by researchers at the Flatiron Institute’s Center for Computational Astrophysics (CCA) in New York city, the results of our eventual merger with the Magellanic Clouds is already being felt. According to results presented at the 235th meeting of the American Astronomical Society this week, stars forming in the outskirts of our galaxy could be the result of these dwarf galaxies merging with our own.

Continue reading “An Upcoming Impact With the Magellanic Clouds is Already Causing Star Formation in the Milky Way”

A Huge Wave is Passing Through the Milky Way Unleashing New Stellar Nurseries

A wave structure of stellar nurseries in the Milky Way. Credit: Alyssa Goodman / Harvard University

Stars are formed within large clouds of gas and dust known as stellar nurseries. While star formation was once seen as a simple gravitational process, we now know it is a complex dance of interactions. When one star forms it can send shock waves through the interstellar medium that trigger other stars to form. Supernovae and galactic collisions can trigger the creation of stars as well. One way to study stellar formation is to look at where stars form within a galaxy.

Continue reading “A Huge Wave is Passing Through the Milky Way Unleashing New Stellar Nurseries”

Chang’e-4 Wraps Up a Year Roving on the Far Side of the Moon

Image of the Yutu-2 rover moving away from the Chang'e-4 mission's landing zone. Credit: CNSA

China greeted the New Year with some impressive lunar milestones. For starters, last Friday (Jan. 3rd) was the first anniversary of the Chang’e-4 mission becoming the first robotic mission to make a landing on the far side of the Moon. A day prior, the Yutu-2 rover also celebrated the end of its 13th lunar day of science operations and the fact that it was the first rover to travel a record 357.695 meters (1,173.5 ft) on the far side of the Moon.

Continue reading “Chang’e-4 Wraps Up a Year Roving on the Far Side of the Moon”