Space Telescopes Could See a Second Life With a Servicing Mission

CAD model of the Gaia spacecraft with service vehicle, post-docking configuration.

Telescopes in space have a huge advantage over those on the ground: they can see the universe more clearly. The Earth’s atmosphere, weather conditions, and low-flying satellites don’t obscure their view. But space telescopes have a disadvantage too. They can’t be repaired, at least not since NASA’s Space Shuttle program ended in 2011.

But next-generation telescopes are being planned with robotic servicing missions in mind. And not just in low earth orbit, where the Hubble Space Telescope received repairs and upgrades five times during its lifespan from space shuttle crews. Today’s engineers are preparing for ways to repair telescopes in deep space, including at the Sun-Earth Lagrange point L2.

Continue reading “Space Telescopes Could See a Second Life With a Servicing Mission”

Other Liquids Could Be Forming Minerals on Mars

At left: Steel is seen to corrode into siderite (FeCO3) when immersed in subcritical liquid carbon dioxide (LCO2). At right: Samples of albite (a plagioclase feldspar) and a sandstone core are observed to form red rhodochrosite (MnCO3) when exposed to supercritical CO2 in the presence of a water solution with potassium chloride and manganese chloride, with particularly strong reaction near the interface of the two solutions. In both experiments, water saturation is provided by floating LCO2 on the water. Under the lower pressure conditions characteristic of early Mars, the water would float on the LCO2. Credits:Photos courtesy of Todd Schaef/PNNL (left) and Earl Mattson/Mattson Hydrology (right).

Most people will think of a dry arid landscape when they think of Mars. When seen from orbit, dry river channels and lake-beds can be seen along with mineral deposits thought to be the created in the presence of liquid water. A team of researches now suggest that liquid carbon dioxide could also explain the features seen. On Earth, a process known as carbon sequestration liquefies CO2 which is buried underground. There are a number of mechanisms that could explain the liquid CO2 underground the researchers suggest.

Continue reading “Other Liquids Could Be Forming Minerals on Mars”

Jared Isaacman is Trump’s Choice for NASA Administrator

Jared Isaacman

As a new President of the United States is elected, the NASA administrator role is usually reviewed. With the election of Trump, a new administrator has been chosen, Jared Isaacman. He is a billionaire entrepreneur, an experienced jet pilot and has himself completed to private flights to space. He was also the first to complete a spacewalk during the Polaris Dawn mission. Isaacman replaces the outgoing administrator Bill Nelson, a former space shuttle astronaut and senator. 

Continue reading “Jared Isaacman is Trump’s Choice for NASA Administrator”

NASA Pushes Human Moon Landing Back to 2027

Artist's rendering of the Starship HLS on the lunar surface. NASA has contracted with SpaceX to provide the lunar landing system. Credit: SpaceX
Artist's rendering of the Starship HLS on the Moon's surface. NASA has contracted with SpaceX to provide the lunar landing system. Credit: SpaceX

The Artemis moon landings are delayed again due to technical difficulties. This time, the problem is with the Orion spacecraft heat shield. NASA administrator Bill Nelson announced that the new landing dates are in April of 2026 for Artemis II and sometime in 2027 for the first human landing during the Artemis III mission.

Continue reading “NASA Pushes Human Moon Landing Back to 2027”

Advanced Civilizations Could be Indistinguishable from Nature

The Search for Extraterrestrial Intelligence. Image Credit: SETI

Sometimes in science you have to step back and take another look at underlying assumptions. Sometimes its necessary when progress stalls. One of the foundational questions of our day concerns the Fermi Paradox, the contradiction between what seems to be a high probability of extraterrestrial life and the total lack of evidence that it exists.

What assumptions underlie the paradox?

Continue reading “Advanced Civilizations Could be Indistinguishable from Nature”

MAUVE: An Ultraviolet Astrophysics Probe Mission Concept

An illustration of the variations among the more than 5,000 known exoplanets discovered since the 1990s. Could their stars' metallicity play a role in making them habitable to life? Credit: NASA/JPL-Caltech
An illustration of the variations among the more than 5,000 known exoplanets discovered since the 1990s. Could their stars' metallicity play a role in making them habitable to life? Credit: NASA/JPL-Caltech

For the past thirty years, NASA’s Great Observatories – the Hubble, Spitzer, Compton, and Chandra space telescopes – have revealed some amazing things about the Universe. In addition to some of the deepest views of the Universe provided by the Hubble Deep Fields campaign, these telescopes have provided insight into the unseen parts of the cosmos – i.e., in the infrared, gamma-ray, and ultraviolet spectrums. With the success of these observatories and the James Webb Space Telescope (JWST), NASA is contemplating future missions that would reveal even more of the “unseen Universe.”

This includes the UltraViolet Explorer (UVEX), a space telescope NASA plans to launch in 2030 as its next Astrophysics Medium-Class Explorer mission. In a recent study, a team comprised of graduate students and postdocs from institutions across the US detailed a concept mission known as the Mission to Analyze the UltraViolet universE (MAUVE). This telescope and its sophisticated instruments were conceived during the inaugural NASA Astrophysics Mission Design School. According to the team’s paper, this mission would hypothetically be ready for launch by 2031.

Continue reading “MAUVE: An Ultraviolet Astrophysics Probe Mission Concept”

Cosmology is at a Crossroads, But New Instruments are Coming to Help

Illustration of the accelerating expansion of the universe. Credit: NASA's Goddard Space Flight Center Conceptual Image Lab

Our understanding of the Universe is profound. Only a century ago, astronomers held a Great Debate to argue over whether our galaxy was an island universe, or whether nebulae such as Andromeda were galaxies in a much larger cosmos. Now we know that the Universe is billions of years old, ever expanding to billions of light-years across, and filled with not just stars and galaxies but with dark energy and cold dark matter. Astronomers summarize this understanding as the LCDM model, which is the standard model of cosmology. While the observational data we have strongly supports this model, it is not without its challenges.

Continue reading “Cosmology is at a Crossroads, But New Instruments are Coming to Help”

A 3U CubeSat Could Collect Data During an Asteroid Flyby

ESA's Asteroid Impact Mission is joined by two triple-unit CubeSats to observe the impact of the NASA-led Demonstration of Autonomous Rendezvous Technology (DART) probe with the secondary Didymos asteroid, planned for late 2022. Image: ESA

One of the great things about CubeSat designs is that they constrain the engineers who design them. Constraints are a great way to develop novel solutions to problems that might otherwise be ignored without them. As CubeSats become increasingly popular, more and more researchers are looking at how to get them to do more with less. A paper from 2020 contributes to that by designing a 3U CubeSat mission that weighs less than 4 kilograms to perform a fly-by of a Near Earth Asteroid (NEA) using entirely off-the-shelf parts.

Continue reading “A 3U CubeSat Could Collect Data During an Asteroid Flyby”

China Plans to Retrieve Mars Samples by 2031

The launch of the Tianwen-1 mission, Wenchang City, south China's Hainan Province, July 23, 2020. Credit: CFP

China’s growing presence in space has been undeniable since the turn of the century. Between sending the first “taikonaut” to space in 2003 (Yang Liwei), launching the first Chinese robotic mission to the Moon (Chang’e-1) in 2007, and the deployment of their Tiangong space station between 2021-2022, China has emerged as a major power in space. Accordingly, they have bold plans for the future, like the proposed expansion of their Tiangong space station and the creation of the International Lunar Research Station (ILRS) by 2035.

In their desire to become a space power that can rival NASA, China also has its sights on Mars. In addition to crewed missions that will culminate in a “permanent base,” they intend to conduct a sample-return mission in the near future. This will be performed by the Tianwen-3 mission, which is currently scheduled to launch in 2028 and return samples to Earth by 2031. In a recent article, the Tianwen-3 science team outlined their exploration strategy, including the methods used to retrieve the samples, the target locations, and how they’ll be analyzed for biosignatures that could indicate the presence of past life.

Continue reading “China Plans to Retrieve Mars Samples by 2031”

Here’s How Interstellar Objects and Rogue Planets Can be Trapped in the Solar System

Illustration of an interstellar object approaching our solar system. Credit: Rubin Observatory/NOIRLab/NSF/AURA/J. daSilva

When Oumuamua traversed our Solar System in 2017 it was the first confirmed Interstellar Object (ISO) to do so. Then in 2019, Comet 2l/Borisov did the same thing. These are the only two confirmed ISOs to visit our Solar System. Many more ISOs must have visited in our Solar System’s long history, and many more will visit in the future. There are obviously more of these objects out there, and the upcoming Vera Rubin Observatory is expected to discover many more.

It’s possible that the Sun could capture an ISO or a rogue planet in the same way that some of the planets have captured moons.

It all comes down to phase space.

Continue reading “Here’s How Interstellar Objects and Rogue Planets Can be Trapped in the Solar System”