Why Is The Moon’s South Pole So Important? It’s All About Water

Elevation data of the Moon showing the South Pole-Aitken Basin. Credit: NASA/GSFC/University of Arizona
Elevation data of the Moon showing the South Pole-Aitken Basin. Credit: NASA/GSFC/University of Arizona

As NASA prepares to return to the Moon by 2024 as part of its Artemis program, the agency is focusing its efforts on exploring the Moon’s polar regions. These are areas of the Moon which seem to have a lot of water mixed in with the regolith.

Continue reading “Why Is The Moon’s South Pole So Important? It’s All About Water”

Watch this Amazing Video of Hayabusa 2 Picking Up a Sample from the Surface of Ryugu

A screen shot from JAXA's video showing Hayabusa 2's second sample grabbing touchdown. Image Credit: JAXA

A new video shows Japan’s Hayabusa 2 sample return spacecraft collecting samples from asteroid Ryugu. The spacecraft has been at Ryugu for months now, and it’s all been leading up to this. In the video, you can clearly see airborne asteroid dust and particles swirling around in the low gravity.

Continue reading “Watch this Amazing Video of Hayabusa 2 Picking Up a Sample from the Surface of Ryugu”

Carnival of Space #622

Carnival of Space. Image by Jason Major.
Carnival of Space. Image by Jason Major.

This week’s Carnival of Space is hosted by Brian Wang at his Next Big Future blog.

Click here to read Carnival of Space #622

And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, sign up to be a host. Send an email to the above address.

Continue reading “Carnival of Space #622”

As Meteorites Slice Through the Atmosphere, They’re Sculpted Into Cones

Artist's concept of the meteorite entering Earth's atmosphere. Credit: University of Oxford

Since it first formed roughly 4.5 billion years ago, planet Earth has been subject to impacts by asteroids and plenty of meteors. These impacts have played a significant role in the geological history of our planet and even played a role in species evolution. And while meteors come in many shapes and sizes, scientists have found that many become cone-shaped once they enter our atmosphere.

The reason for this has remained a mystery for some time. But thanks to a recent study conducted by a team of researchers from New York University’s Applied Mathematics Lab have figured out the physics that leads to this transformation. In essence, the process involves melting and erosion that ultimately turns meteorities into the ideal shape as they hurl through the atmosphere.

Continue reading “As Meteorites Slice Through the Atmosphere, They’re Sculpted Into Cones”

Great News! The Large Synoptic Survey Telescope Might be Named for Vera Rubin

The LSST, or Vera Rubin Survey Telescope, under construction at Cerro Pachon, Chile. Image Credit: LSST

The U.S. House of Representatives have passed a bill to change the name of the Large Synoptic Survey Telescope (LSST.) Instead of that explanatory yet cumbersome name, it will be named after American astronomer Vera Rubin. Rubin is well-known for her pioneering work in discovering dark matter.

Continue reading “Great News! The Large Synoptic Survey Telescope Might be Named for Vera Rubin”

Thanks to Gaia, we Now Know Exactly How Big Europa is

The fascinating surface of Jupiter’s icy moon Europa looms large in this newly-reprocessed color view, made from images taken by NASA's Galileo spacecraft in the late 1990s. This is the color view of Europa from Galileo that shows the largest portion of the moon's surface at the highest resolution. Credits: NASA/JPL-Caltech/SETI Institute

Jupiter’s moon Europa continues to be a source of wonder and scientific intrigue. As one of the four Galilean Moons (so-named because of their founder, Galileo Galilee), Europa is one of Jupiter’s largest satellites and is considered one of the best bets for finding extraterrestrial life in the Solar System. And recently, it joined its cousins (Io and Callisto) in passing in front of a star.

This type of rare event (a stellar occultation) allows astronomers to conduct unique observations of a celestial body. In Europa’s case, the occultation took place in 2017 and allowed astronomers to make more precise measurements of Europa’s size, its position relative to Jupiter, and its true shape. All this was made possible by the ESA’s Gaia Observatory, which let astronomers know exactly when and where to look for the moon.

Continue reading “Thanks to Gaia, we Now Know Exactly How Big Europa is”

Fossilized Clams Had Evidence of a Meteorite Impact Inside Them

Some of the microtektites found by Mike Meyer inside fossilized clams in Florida. Image Credit: Photo by Meyer et al in Meteoritics and Planetary Science.

When an extraterrestrial object slams into the Earth, it sends molten rock high into the atmosphere. That debris cools and re-crystallizes and falls back down to Earth. Tiny glass beads that form in this process are called microtektites, and researchers in Florida have found microtektites inside fossilized clams.

Continue reading “Fossilized Clams Had Evidence of a Meteorite Impact Inside Them”

What Did the Early Milky Way Look Like?

The Milky Way 10 billion years ago and the Milky Way today. Image Credit: Gabriel Pérez Díaz, SMM (IAC)

In the very early days of our Universe, just over 13 billion years ago, there was very little structure. There were stars, and they were forming at a rapid rate, kicking off what’s known as the Stelliferous Era. But the enormous, majestic galaxies that we see today, including our Milky Way galaxy, hadn’t formed yet.

Continue reading “What Did the Early Milky Way Look Like?”