The Entrance of a Lunar Lava Tube Mapped from Space

Topography of a lavatube

Craters are a familiar sight on the lunar surface and indeed on many of the rocky planets in the Solar System. There are other circular features that are picked up on images from orbiters but these pits are thought to be the collapsed roofs of lava tubes. A team of researchers have mapped one of these tubes using radar reflection and created the first 3D map of the tube’s entrance. Places like these could make ideal places to setup research stations, protected from the harsh environment of an alien world. 

Continue reading “The Entrance of a Lunar Lava Tube Mapped from Space”

Moon Dust Could Contaminate Lunar Explorers’ Water Supply

Water purification is a big business on Earth. Companies offer everything from desalination to providing just the right pH level for drinking water. But on the Moon, there won’t be a similar technical infrastructure to support the astronauts attempting to make a permanent base there. And there’s one particular material that will make water purification even harder – Moon dust. 

Continue reading “Moon Dust Could Contaminate Lunar Explorers’ Water Supply”

SpaceX Reveals the Beefed-Up Dragon That Will De-Orbit the ISS

Artist's impression of the U.S. Deorbit Vehicle currently being developed by SpaceX. Credit: NASA

The International Space Station (ISS) has been continuously orbiting Earth for more than 25 years and has been visited by over 270 astronauts, cosmonauts, and commercial astronauts. In January 2031, a special spacecraft designed by SpaceX – aka. The U.S. Deorbit Vehicle – will lower the station’s orbit until it enters our atmosphere and lands in the South Pacific. On July 17th, NASA held a live press conference where it released details about the process, including a first glance at the modified SpaceX Dragon responsible for deorbiting the ISS.

Continue reading “SpaceX Reveals the Beefed-Up Dragon That Will De-Orbit the ISS”

Gaia Hit by a Micrometeoroid AND Caught in a Solar Storm

Artist impression of ESA's Gaia satellite observing the Milky Way. The background image of the sky is compiled from data from more than 1.8 billion stars. It shows the total brightness and colour of stars observed by Gaia
Artist impression of ESA's Gaia satellite observing the Milky Way (Credit : ESA/ATG medialab; Milky Way: ESA/Gaia/DPAC)

For over ten years, the ESA’s Gaia Observatory has monitored the proper motion, luminosity, temperature, and composition of over a billion stars throughout our Milky Way galaxy and beyond. This data will be used to construct the largest and most precise 3D map of the cosmos ever made and provide insight into the origins, structure, and evolutionary history of our galaxy. Unfortunately, this sophisticated astrometry telescope is positioned at the Sun-Earth L2 Lagrange Point, far beyond the protection of Earth’s atmosphere and magnetosphere.

As a result, Gaia has experienced two major hazards in recent months that could endanger the mission. These included a micrometeoroid impact in April that disrupted some of Gaia‘s very sensitive sensors. This was followed by a solar storm in May—the strongest in 20 years—that caused electrical problems for the mission. These two incidents could threaten Gaia‘s ability to continue mapping stars, planets, comets, asteroids, quasars, and other objects in the Universe until its planned completion date of 2025.

Continue reading “Gaia Hit by a Micrometeoroid AND Caught in a Solar Storm”

Lunar Infrastructure Could Be Protected By Autonomously Building A Rock Wall

Lunar exploration equipment at any future lunar base is in danger from debris blasted toward it by subsequent lunar landers. This danger isn’t just theoretical – Surveyor III was a lander during the Apollo era that was damaged by Apollo 12’s descent rocket and returned to Earth for closer examination. Plenty of ideas have been put forward to limit this risk, and we’ve reported on many of them, from constructing landing pads out of melted regolith to 3D printing a blast shield out of available materials. But a new paper from researchers in Switzerland suggests a much simpler idea – why not just build a blast wall by stacking a bunch of rocks together?

Continue reading “Lunar Infrastructure Could Be Protected By Autonomously Building A Rock Wall”

Why is Jupiter’s Great Red Spot Shrinking? It’s Starving.

Hubble’s 2021 image of Jupiter shows the Great Red Spot, along with smaller storms that may be affecting its size over time. Courtesy NASA/ESA/STScI.
Hubble’s 2021 image of Jupiter shows the Great Red Spot, along with smaller storms that may be affecting its size over time. Courtesy NASA/ESA/STScI.

The largest storm in the Solar System is shrinking and planetary scientists think they have an explanation. It could be related to a reduction in the number of smaller storms that feed it and may be starving Jupiter’s centuries-old Great Red Spot (GRS).

Continue reading “Why is Jupiter’s Great Red Spot Shrinking? It’s Starving.”

ESA is Building a Mission to Visit Asteroid Apophis, Joining it for its 2029 Earth Flyby

ESA's Ramses mission to asteroid Apophis. Credit: ESA

According to the ESA’s Near-Earth Objects Coordination Center (NEOCC), 35,264 known asteroids regularly cross the orbit of Earth and the other inner planets. Of these, 1,626 have been identified as Potentially Hazardous Asteroids (PHAs), meaning that they may someday pass close enough to Earth to be caught by its gravity and impact its surface. While planetary defense has always been a concern, the comet Shoemaker-Levy 9 slamming into Jupiter in 1994 sparked intense interest in this field.

In 2022, NASA’s Double-Asteroid Redirect Test (DART) mission successfully tested the kinetic impact method when it collided with Dimorphos, the small asteroid orbiting Didymos. Today, the ESA Space Safety program is taking steps to test the next planetary defense mission – the Rapid Apophis Missin for Space Safety (RAMSES). In 2029, RAMSES will rendezvous with the Near Earth Asteroid (NEA) 99942 Apophis and accompany it as it makes a very close (but safe) flyby of Earth in 2029. The data it collects will help scientists improve our ability to protect Earth from similar objects that could pose an impact risk.

Continue reading “ESA is Building a Mission to Visit Asteroid Apophis, Joining it for its 2029 Earth Flyby”

The Most Dangerous Part of a Space Mission is Fire

This AI generated image shows a fire spreading in a spacecraft. Researchers are working to understand how fire behaves differently in spacecraft environments so they can protect astronauts. Image Credit: ZARM/ University of Bremen

Astronauts face multiple risks during space flight, such as microgravity and radiation exposure. Microgravity can decrease bone density, and radiation exposure is a carcinogen. However, those are chronic effects.

The biggest risk to astronauts is fire since escape would be difficult on a long mission to Mars or elsewhere beyond Low Earth Orbit. Scientists are researching how fire behaves on spacecraft so astronauts can be protected.

Continue reading “The Most Dangerous Part of a Space Mission is Fire”

Stars Can Survive Their Partner Detonating as a Supernova

A binary star system consisting of two stars: a dense neutron star (lower right) and a normal Sun-like star (upper left). The neutron star formed in a supernova explosion and the Sun-like star survived it. Credit: Caltech/R. Hurt (IPAC)
A binary star system consisting of two stars: a dense neutron star (lower right) and a normal Sun-like star (upper left). The neutron star formed in a supernova explosion and the Sun-like star survived it. Credit: Caltech/R. Hurt (IPAC)

When a massive star dies in a supernova explosion, it’s not great news for any planets or stars that happen to be nearby. Generally, the catastrophic event crisps nearby worlds and sends companion stars careening through space. So, astronomers were pretty surprised to find 21 neutron stars—the crushed stellar cores left over after supernova explosions—orbiting in binary systems with Sun-like stars.

Continue reading “Stars Can Survive Their Partner Detonating as a Supernova”

Swarming Satellites Could Autonomously Characterize an Asteroid

An asteroid’s size, shape, and rotational speed are clues to its internal properties and potential resources for mining operations. However, of the more than 20,000 near-Earth asteroids currently known, only a tiny fraction have been sufficiently characterized to estimate those three properties accurately. That is essentially a resource constraint – there aren’t enough dedicated telescopes on Earth to keep track of all the asteroids for long enough to characterize them, and deep space resources, such as the Deep Space Network required for communications outside Earth’s orbit, are already overutilized by other missions. Enter the Autonomous Nanosatellite Swarming (ANS) mission concept, developed by Dr. Simone D’Amico and his colleagues at Stanford’s Space Rendezvous Laboratory. 

Continue reading “Swarming Satellites Could Autonomously Characterize an Asteroid”