One Year, Almost 1,000 Planetary Candidates. An Update On TESS

NASA’s Transiting Exoplanet Survey Telescope launched back in April, 2018. After a few months of testing, it was ready to begin mapping the southern sky, searching for planets orbiting stars relatively nearby.

We’re just over a year into the mission now, and on July 18th, TESS has shifted its attention to the Northern Hemisphere, continuing the hunt for planets in the northern skies.

Continue reading “One Year, Almost 1,000 Planetary Candidates. An Update On TESS”

Dead Planets Around White Dwarfs Could Emit Radio Waves We Can Detect, Sending Out Signals for Billions of Years

Credit: University of Warwick/Mark Garlick

When a star reaches the end of its life cycle, it will blow off its outer layers in a fiery explosion known as a supernova. Where less massive stars are concerned, a white dwarf is what will be left behind. Similarly, any planets that once orbited the star will also have their outer layers blown off by the violent burst, leaving behind the cores behind.

For decades, scientists have been able to detect these planetary remnants by looking for the radio waves that are generated through their interactions with the white dwarf’s magnetic field. According to new research by a pair of researchers, these “radio-loud” planetary cores will continue to broadcast radio signals for up to a billion years after their stars have died, making them detectable from Earth.

Continue reading “Dead Planets Around White Dwarfs Could Emit Radio Waves We Can Detect, Sending Out Signals for Billions of Years”

The Story of the Apollo Guidance Computer, Part 3

Entering commands into the Display and Keyboard (DSKY) of the Apollo Guidance Computer during a simulation. Image courtesy: Draper.

During the development of the Apollo Guidance Computer (AGC) by the MIT Instrumentation Laboratory (see Part 1 and Part 2 for the complete backstory), an inauspicious event occurred sometime during 1965-1966, while the Gemini missions were going on.

The Gemini program helped NASA get ready for the Apollo Moon landings missions by testing out rendezvous and other critical techniques and technologies. Ten crews flew missions in Earth orbit on the two-person Gemini spacecraft.

Continue reading “The Story of the Apollo Guidance Computer, Part 3”

There May be Thick Ice Deposits on the Moon and Mercury

Conceptual illustration of permanently shadowed, shallow icy craters near the lunar south pole. Credits: UCLA/NASA

In addition to being the only solvent that is capable of supporting life, water is essential to life as we know it here on Earth. Because of this, finding deposits of water – whether in liquid form or as ice – on other planets is always exciting. Even where is not seen as a potential indication of life, the presence of water offers opportunities for exploration, scientific study, and even the creation of human outposts.

This has certainly been the case as far as the Moon and Mercury are concerned, where water ice was discovered in the permanently-shadowed cratered regions around the poles. But according to a new analysis of the data from the Lunar Reconnaissance Orbiter and the MESSENGER spacecraft, the Moon and Mercury may have significantly more water ice than previously thought.

Continue reading “There May be Thick Ice Deposits on the Moon and Mercury”

Maybe Dark Matter is Warm, Not Cold

The early universe. Credit: Tom Abel & Ralf Kaehler (KIPACSLAC)/ AMNH/NASA

Since the “Golden Age of General Relativity” in the 1960s, scientists have held that much of the Universe consists of a mysterious invisible mass known as “Dark Matter“. Since then, scientists have attempted to resolve this mystery with a double-pronged approach. On the one hand, astrophysicists have attempted to find a candidate particle that could account for this mass.

On the other, astrophysicists have tried to find a theoretical basis that could explain Dark Matter’s behavior. So far, the debate has centered on the question of whether it is “hot” or “cold”, with cold enjoying an edge because of its relative simplicity. However, a new study conducted led by the Harvard-Smithsonian Center for Astrophysics (CfA) revits the idea that Dark Matter might actually be “warm”.

Continue reading “Maybe Dark Matter is Warm, Not Cold”

The Story of the Apollo Guidance Computer, Part 2

An early integrated circuit, known as the Fairchild 4500a integrated circuit. Image courtesy: Draper.

In the late 1950’s, before NASA had any intentions of going to the Moon – or needing a computer to get there — the MIT Instrumentation Laboratory had designed and built a small prototype probe they hoped would one day fly to Mars (read the background in part 1 of this story here).  This little probe used a small, rudimentary general-purpose computer for navigation, based on the inertial systems for ballistic missiles, submarines, and aircraft the Lab had designed and built for the military since World War II.

Continue reading “The Story of the Apollo Guidance Computer, Part 2”

Elon Musk Outlines the Next Few Weeks of Starship Tests

Artist's illustration of the SpaceX Starship. Credit: SpaceX
Artist's illustration of the SpaceX Starship. Credit: SpaceX

Despite a few setbacks in the past few months, 2019 is shaping up to be an exciting year for SpaceX. After a series of successful tethered hop tests, the ground crews at the company’s South Texas Launch Site in Boca Chica conducted the first free-flight test of the Starship Hopper late last month – which saw the test vehicle ascend to 20 meters (~65 feet), move laterally, and then land again.

Based on this success, Musk announced shortly thereafter that the company could be taking the next step and conducting a 200 meter (650 foot) hop sometime this month. This past weekend, Musk also indicated that the company will be giving further updates on the design of the finished Starship later this month, followed by a test of the “Starship Mk1”, an orbital-class prototype that will feature three Raptor engines.

Continue reading “Elon Musk Outlines the Next Few Weeks of Starship Tests”

What Are Light Echoes? Using Reflections Of Light To See Even Further Back In Time

Star V838 Monocerotis
Star V838 Monocerotis

When we look outward into space, we’re looking backwards in time. That’s because light moves, at the speed of light. It takes time for the light to reach us.

But it gets even stranger than that. Light can be absorbed, reflected, and re-emitted by gas and dust, giving us a second look.

They’re called light echoes, and allow astronomers another way to understand the Universe around us.

Continue reading “What Are Light Echoes? Using Reflections Of Light To See Even Further Back In Time”

Bright Fireball Explodes Over Ontario, Meteorite Fragments Might Have Reached the Ground

. Credit: NASA’s All Sky Fireball Network

On Wednesday, July 24th, the people of the Great Lakes region were treated to a spectacular sight when a meteor streaked across the sky. The resulting fireball was observed by many onlookers, as well as the University of Western Ontario’s All-Sky Camera Network. This array runs across southern Ontario and Quebec and is maintained in collaboration with NASA’s Meteoroid Environment Office (MEO) at the Marshall Space Flight Center.

What is especially exciting about this event is the possibility that fragments of this meteorite fell to Earth and could be retrieved. This was the conclusion reached by Steven Ehlert at the MEO after he analyzed the video of the meteorite erupting like a fireball in the night sky. Examination of these fragments could tell astronomers a great deal about the formation and evolution of the Solar System.

Continue reading “Bright Fireball Explodes Over Ontario, Meteorite Fragments Might Have Reached the Ground”