This is What It’ll Look Like When the Milky Way and Andromeda Galaxies Collide Billions of Years from Now

Located in the constellation of Hercules, about 230 million light-years away, NGC 6052 is a pair of colliding galaxies. Image Credit: ESA/Hubble & NASA, A. Adamo et al.
Located in the constellation of Hercules, about 230 million light-years away, NGC 6052 is a pair of colliding galaxies. Image Credit: ESA/Hubble & NASA, A. Adamo et al.

What happens when two galaxies collide? The Milky Way and the Andromeda Galaxy are on a collision course, and in about 4.5 billion years, they will meet. Now astronomers using the Hubble have provided some visual insight into what that collision might look like.

Continue reading “This is What It’ll Look Like When the Milky Way and Andromeda Galaxies Collide Billions of Years from Now”

China’s Lunar Rover Wakes Up and Gets to Work for its 3rd Lunar Day

China's Yutu-2 rover captured this image of the lunar surface during its third lunar day. Image Credit: CLEP/CNSA
China's Yutu-2 rover captured this image of the lunar surface during its third lunar day. Image Credit: CLEP/CNSA

The China National Space Administration (CNSA) has released some new photos and updated the world on their lunar rover mission. The Yutu-2 rover is working its way into the history books on the lunar far side, exploring the Von Karman crater. It’s third lunar day is now in the record books.

Continue reading “China’s Lunar Rover Wakes Up and Gets to Work for its 3rd Lunar Day”

Using Black Holes to Conquer Space: The Halo Drive!

Close-up of star near a supermassive black hole (artist’s impression). Credit: ESA/Hubble, ESO, M. Kornmesser

The idea of one day traveling to another star system and seeing what is there has been the fevered dream of people long before the first rockets and astronauts were sent to space. But despite all the progress we have made since the beginning of the Space Age, interstellar travel remains just that – a fevered dream. While theoretical concepts have been proposed, the issues of cost, travel time and fuel remain highly problematic.

A lot of hopes currently hinge on the use of directed energy and lightsails to push tiny spacecrafts to relativistic speeds. But what if there was a way to make larger spacecraft fast enough to conduct interstellar voyages? According to Prof. David Kipping – the leader of Columbia University’s Cool Worlds lab – future spacecraft could rely on a Halo Drive, which uses the gravitational force of a black hole to reach incredible speeds.

Continue reading “Using Black Holes to Conquer Space: The Halo Drive!”

Jupiter or Earth? Which One’s Which, and Why Do They Look so Similar?

Though Jupiter and Earth are wildly differing places, some things are the same on both worlds. Image Credit: NASA
Though Jupiter and Earth are wildly differing places, some things are the same on both worlds. Image Credit: NASA

Jupiter: a massive, lifeless gas giant out there on the other side of the asteroid belt. It’s a behemoth, containing 2.5 times as much mass as all the other planets combined. To top it off, it’s named after the Roman God of War.

Earth: a tiny rocky world, almost too close to the Sun, where life rises and falls, punctuated repeatedly by extinctions. Compared to Jupiter, it’s a gum-drop world: Jupiter is 317.8 times the mass of Earth. And Earth is named after a goddess in German paganism, or so we think.

“Out of all the complexity flows beauty…”

Norman Kuring, NASA’s Goddard Space Flight Center.

Continue reading “Jupiter or Earth? Which One’s Which, and Why Do They Look so Similar?”

Now You Can See MU69 in Thrilling 3D

This image of Ultima Thule can be viewed with red-blue stereo glasses to reveal the Kuiper Belt object's three-dimensional shape. Credit: NASA/JHUAPL/SwRI/NOAO

Got your 3D glasses handy? Then prepare for the most realistic views of Ultima Thule yet! Yes, it seems that every few weeks, there’s a new image of the Kuiper Belt Object (KBO) that promises the same thing. But whereas all the previous contenders were higher-resolution images that allowed for a more discernible level of detail, these images are the closest we will get to seeing the real thing up close!

Continue reading “Now You Can See MU69 in Thrilling 3D”

A Newer, More Accurate Measurement Sets the Mass of the Milky Way at 1.5 Trillion Solar Masses

An artist's illustration of the 44 globular clusters used to measure the mass of the Milky Way. Image Credit: ESA/Hubble, NASA, L. Calçada
An artist's illustration of the 44 globular clusters used to measure the mass of the Milky Way. Image Credit: ESA/Hubble, NASA, L. Calçada

Astronomers keep trying to measure the mass of the Milky Way and they keep coming up with different numbers. But it’s not that they’re bad at math. Measuring the mass of something as enormous as the Milky Way is confounding. Plus, we’re embedded in it; it takes some very clever maneuvering to constrain its mass.

Continue reading “A Newer, More Accurate Measurement Sets the Mass of the Milky Way at 1.5 Trillion Solar Masses”

Messier 80 – the NGC 6093 Globular Cluster

The globular cluster Messier 80. Credit: NASA/Hubble Heritage Team/STScI/ AURA

Welcome back to Messier Monday! Today, we continue in our tribute to our dear friend, Tammy Plotner, by looking at the globular cluster known as Messier 80!

During the 18th century, famed French astronomer Charles Messier noticed the presence of several “nebulous objects”  while surveying the night sky. Originally mistaking these objects for comets, he began to catalog them so that others would not make the same mistake. Today, the resulting list (known as the Messier Catalog) includes over 100 objects and is one of the most influential catalogs of Deep Space Objects.

One of these objects is Messier 80, a globular star cluster located about 32,600 light years from Earth in the constellation Scorpius. This cluster is one of the most densely populated in our galaxy and is located about halfway between the bright stars Antares, Alpha Scorpii, Akrab and Beta Scorpii – making it relatively easy to find.

Continue reading “Messier 80 – the NGC 6093 Globular Cluster”

Massive Photons Could Explain Dark Matter, But Don’t

A computer simulation of the distribution of matter in the universe. Orange regions host galaxies; blue structures are gas and dark matter. Credit: TNG Collaboration

I’ll be the first to admit that we don’t understand dark matter. We do know for sure that something funny is going on at large scales in the universe (“large” here meaning at least as big as galaxies). In short, the numbers just aren’t adding up. For example, when we look at a galaxy and count up all the hot glowing bits like stars and gas and dust, we get a certain mass. When we use any other technique at all to measure the mass, we get a much higher number. So the natural conclusion is that not all the matter in the universe is all hot and glowy. Maybe some if it is, you know, dark.

But hold on. First we should check our math. Are we sure we’re not just getting some physics wrong?

Continue reading “Massive Photons Could Explain Dark Matter, But Don’t”