This is Kepler’s Final Image

MATLAB Handle Graphics. Credit: NASA/Ames Research Center

On October 30th, 2018, after nine years of faithful service, the Kepler Space Telescope was officially retired. With nearly 4000 candidates and 2,662 confirmed exoplanets to its credit, no other telescope has managed to teach us more about the worlds that exist beyond our Solar System. In the coming years, multiple next-generation telescopes will be deployed that will attempt to build on the foundation Kepler built.

And yet, even in retirement, Kepler is still providing us with impressive discoveries. For starters, NASA started the new year by announcing the discovery of several new exoplanets, including a Super-Earth and a Saturn-sized gas giant, as well as an unusually-sized planet that straddles these two categories. On top of that, NASA recently released the “last lighty” image and recordings obtained by Kepler before it ran out of fuel and ended its mission.

Continue reading “This is Kepler’s Final Image”

A Star’s Outburst is Releasing Organic Molecules Trapped in the ice Around it

Artist’s impression of the protoplanetary disk around a young star V883 Ori. The outer part of the disk is cold and dust particles are covered with ice. ALMA detected various complex organic molecules around the snow line of water in the disk. Credit: National Astronomical Observatory of Japan

According to widely-accepted theories, the Solar System formed roughly 4.6 billion years ago from a massive cloud of dust and gas (aka. Nebular Theory). This process began when the nebula experienced a gravitational collapse in the center that became our Sun. The remaining dust and gas formed a protoplanetary disk that (over time) accreted to form the planets.

However, scientists remain unsure about when organic molecules first appeared in our Solar System. Luckily, a new study by an international team of astronomers may be able to help answer that question. Using the Atacama Large Millimeter-submillimeter Array (ALMA), the team detected complex organic molecules around the young star V883 Ori, which could someday lead to the emergence of life in that system.

Continue reading “A Star’s Outburst is Releasing Organic Molecules Trapped in the ice Around it”

InSight Just Put a Windshield Over its Seismometer

The InSight lander has deployed SEIS's wind and thermal shield. Image Credit: NASA/JPL-CalTech
The InSight lander has deployed SEIS's wind and thermal shield. Image Credit: NASA/JPL-CalTech

NASA’s InSight lander arrived on Mars on November 26th, 2018. Since then, it’s been busying itself studying its landing spot, and taking its time to carefully place its instruments. It spent several weeks testing the seismometer and adjusting it, and now it’s placed the domed, protective shield over the instrument.

Continue reading “InSight Just Put a Windshield Over its Seismometer”

The Milky Way is Actually Warped

Artist’s impression of the warped and twisted Milky Way disk. Credit: Chen Xiaodian/Kavli Institute of Astronomy and Astrophysics

For centuries, astronomers have been studying the Milky Way in order to get a better understanding of its size and structure. And while modern instruments have yielded invaluable observations of our galaxy and others (which have allowed astronomers to gain a general picture of what it looks like), a truly accurate model of our galaxy has been elusive.

For example, a recent study by a team of astronomers from National Astronomical Observatories of Chinese Academy of Sciences (NAOC) has shown that the large-scale structure of the Milky Way is quite warped. Based on their findings, it appears that this effect becomes increasingly evident the farther away one ventures from the core.

Continue reading “The Milky Way is Actually Warped”

ESA is Planning a Mission to the Smallest Spacerock Ever Visited: the Moon of an Asteroid

An illustration of the ESA's Hera spacecraft at Didymos. Image Credit: ESA–ScienceOffice.org
An illustration of the ESA's Hera spacecraft at Didymos. Image Credit: ESA–ScienceOffice.org

For some small minority of humans, Death By Asteroid is a desirable fate. The idea probably satisfies their wonky Doomsday thinking. But for the rest of us, going out the same way the dinosaurs did would just be embarrassing. Thankfully, the ESA’s Hera mission will visit the smallest spacerock ever, and will help us avoid going the way of the dinosaurs.

For added kicks, it will forestall the happiness of any over-earger doomsday cultists, and the rest of us can revel in their existential anguish.

Continue reading “ESA is Planning a Mission to the Smallest Spacerock Ever Visited: the Moon of an Asteroid”

Weekly Space Hangout: Feb 6, 2019: Dr. Natalie Hinkel and “The Hypatia Catalog”

Hosts:
Fraser Cain (universetoday.com / @fcain)
Dr. Paul M. Sutter (pmsutter.com / @PaulMattSutter)
Dr. Kimberly Cartier (KimberlyCartier.org / @AstroKimCartier )
Dr. Morgan Rehnberg (MorganRehnberg.com / @MorganRehnberg & ChartYourWorld.org)

Dr. Natalie Hinkel is a Planetary Astrophysicist at the Southwest Research Institute and a co-investigator for the Nexus for Exoplanet System Science (NExSS) research network at Arizona State University. Natalie studies elements in our solar neighborhood (i.e., within 150pc of the Sun,) to learn how element abundances impact the structure and mineralogy of planets.

Continue reading “Weekly Space Hangout: Feb 6, 2019: Dr. Natalie Hinkel and “The Hypatia Catalog””

How Big Would a Generation Ship Need to be to Keep a Crew of 500 Alive for the Journey to Another Star?

Interior view of an O'Neill Cylinder. There are alternating strips of livable surface and "windows" to let light in. Image: Rick Guidice, NASA Ames Research Center

There’s no two ways about it, the Universe is an extremely big place! And thanks to the limitations placed upon us by Special Relativity, traveling to even the closest star systems could take millennia. As we addressed in a previous article, the estimated travel time to the nearest star system (Alpha Centauri) could take anywhere from 19,000 to 81,000 years using conventional methods.

For this reason, many theorists have recommended that humanity should rely on generation ships to spread the seed of humanity among the stars. Naturally, such a project presents many challenges, not the least of which is how large a spacecraft would need to be to sustain a multi-generational crew. In a new study, a team of international scientists addressed this very question and determined that a lot of interior space would be needed!

Continue reading “How Big Would a Generation Ship Need to be to Keep a Crew of 500 Alive for the Journey to Another Star?”

Two Newly-Discovered Exoplanets are Probably the Result of a Catastrophic Collision

Simulation of a collision between two 10 Earth-mass planets. Image Credit: Zoe Leinhardt and Thomas Denman, University of Bristol
Simulation of a collision between two 10 Earth-mass planets. Image Credit: Zoe Leinhardt and Thomas Denman, University of Bristol

How can two planets so similar in some respects have such different densities? According to a new study, a catastrophic collision may be to blame.

In our Solar System, all the inner planets are small rocky worlds with similar densities, while the outer planets are gas giants with their own similar densities. But not all solar systems are like ours.

Continue reading “Two Newly-Discovered Exoplanets are Probably the Result of a Catastrophic Collision”

How The Sun’s Scorching Corona Stays So Hot

corona
The view of the corona during totality? This computational model was derived from NASA SDO data during the last solar rotation. Credit: Predictive Science Inc.

We’ve got a mystery on our hands. The surface of the sun has a temperature of about 6,000 Kelvin – hot enough to make it glow bright, hot white. But the surface of the sun is not its last later, just like the surface of the Earth is not its outermost layer. The sun has a thin but extended atmosphere called the corona. And that corona has a temperature of a few million Kelvin.

How does the corona have such a higher temperature than the surface?

Like I said, a mystery.

Continue reading “How The Sun’s Scorching Corona Stays So Hot”